Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
基本信息
- 批准号:10584192
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAreaAutoimmuneAwarenessBiologicalBrainBrain regionCOVID-19CellsCharacteristicsChromatinClinicalCodeCommunitiesDataData SetDetectionDevelopmentDiseaseDrug TargetingElectronic Health RecordEpigenetic ProcessFunctional disorderFutureGene ExpressionGene TargetingGenerationsGenesGeneticGenetic VariationGenomeGenomic approachGenomicsGenotypeGoalsGraphHeritabilityHigh PrevalenceHumanIndividualInterventionJointsLibrariesMachine LearningMethodsModelingMolecularMolecular ProfilingOutcomeParticipantPathway interactionsPatientsPharmaceutical PreparationsPhenotypePositioning AttributePreventionProteomeProteomicsPsychiatryRegulationResearchResearch PersonnelResolutionResourcesRiskRoleSamplingSpecificityStructureTestingTherapeuticTherapeutic EffectTherapeutic InterventionTissuesUntranslated RNAVariantVeteransbiobankbrain tissuecausal variantcell typedeep learningdisorder riskdrug developmentdrug discoverydrug efficacyeconomic costepigenomegene interactiongenetic analysisgenetic architecturegenetic variantgenome wide association studygenome-widehistone modificationimprovedindexingindividualized medicinelarge scale datamolecular scalemortalitymultiple omicsneuropsychiatrynext generationnovelnovel strategiespatient subsetsphenomeprecision medicinepredictive modelingprogramspsychopharmacologicrisk variantsevere mental illnesstherapeutic evaluationtraittranscriptometranscriptomicstreatment response
项目摘要
PROJECT SUMMARY
Precision Psychiatry is an emerging approach that considers patients’ characteristics to customize prevention
and treatment for serious mental illness. The Million Veteran Program (MVP) is the largest and most
comprehensive biobank in the world, currently involving multi-ancestry genetic data from more than 650,000
Veterans and highly dense electronic health record information that fully captures the clinical characteristics of
each participant. Given the high prevalence of serious mental illness among our Veterans, MVP provides a
unique opportunity to perform large-scale genetic discovery that will further our understanding of the
pathophysiology of serious mental illness and promote Precision Psychiatry. While well-powered genome-wide
association studies (GWAS) have identified multiple risk variants across serious mental illness, there have been
limited conclusive findings on the functional relevance of most discovered loci due to small effect size, overlap
with non-coding regions of the genome and unclear mechanisms through which they act. Our group and others
have shown that a large portion of phenotypic variability in disease risk can be explained by regulatory variants
with cell type specificity, i.e. genetic variants that affect epigenetic mechanisms and the expression levels of
genes. Studying gene expression and epigenome changes directly in MVP samples is not feasible as such data
are not available. To overcome these limitations, we propose to take advantage of large-scale datasets with
genotyping and multiscale molecular profiling that our group and others have generated in human brain tissue
and apply machine learning approaches to directly impute genome-wide transcriptomes, epigenomes and
proteomes in MVP samples using the existing MVP genotypes. The primary goals of our project are threefold:
First, imputed MVP transcriptomes, epigenomes and proteomes will be meta-analyzed to single tissue-specific
gene dysregulation scores for each individual via a novel method, called PolyXcan, which leverages a data-
driven correlation-aware meta-analytical framework and performs joint multi-omics-wide association studies. For
each serious mental illness, key gene drivers and molecular pathways will be identified with a structured,
interpretable deep learning approach and gene-gene interaction effects by leveraging patient subtypes identified
with semi-supervised graph-based cluster methods; both of these approaches are only possible with well-
powered individual-level (genotypic and phenotypic) data of the scale that exists in MVP and we expect them to
enhance efforts for gene target prioritization and drug discovery. Second, imputed gene dysregulation for each
individual in MVP will be integrated with perturbagen reference libraries (describing the effect of therapeutic
compounds on gene expression) to identify the extent to which compounds could be therapeutic by antagonizing
the predicted gene dysregulation. We have validated this approach to summary level data (from GWAS) in a
wide range of disorders (autoimmune, neuropsychiatric and COVID-19). Here we propose to use the same
approach at the individual level to determine whether genetics can be utilized to rank potential treatments and
predict the ones that achieve better outcomes. Third, the scale of data generation and its integration into
predictive models will provide a wealth of data that will be made available to the MVP scientific community for
other diseases beyond the immediate goals of this proposal that have the potential to increase our understanding
of Precision Psychiatry. Successful completion of our study would have an enormous impact on our Veterans
since, in addition to the tremendous burden of suffering and economic costs, serious mental illness increases
the mortality rate among Veterans.
项目摘要
精准精神病学是一种新兴的方法,它考虑患者的特征来定制预防
以及严重精神疾病的治疗百万退伍军人计划(MVP)是最大和最
世界上最全面的生物库,目前涉及超过65万个多祖先遗传数据,
退伍军人和高度密集的电子健康记录信息,充分捕捉临床特征,
每个参与者。鉴于我们的退伍军人中严重精神疾病的高患病率,MVP提供了一个
进行大规模基因发现的独特机会,这将进一步加深我们对
严重精神疾病的病理生理学,并促进精确精神病学。虽然全基因组的能量很大
关联研究(GWAS)已经确定了严重精神疾病的多种风险变体,
由于效应量小,重叠,大多数发现的基因座的功能相关性的结论性结果有限
基因组的非编码区和它们的作用机制尚不清楚。我们集团和其他
已经表明,疾病风险中的大部分表型变异可以通过调节变异来解释,
具有细胞类型特异性,即影响表观遗传机制和表达水平的遗传变异,
基因.直接研究MVP样品中的基因表达和表观基因组变化是不可行的,
不可用。为了克服这些限制,我们建议利用大规模数据集,
基因分型和多尺度分子分析,我们的团队和其他人已经在人脑组织中产生了
并应用机器学习方法直接将全基因组转录组、表观基因组和
使用现有的MVP基因型在MVP样品中的蛋白质组。我们项目的主要目标有三个方面:
首先,将对估算的MVP转录组、表观基因组和蛋白质组进行荟萃分析,以确定单个组织特异性
通过一种名为PolyXcan的新方法为每个个体进行基因失调评分,该方法利用数据-
驱动的相关性感知元分析框架,并进行联合多组学范围内的关联研究。为
每一种严重的精神疾病,关键的基因驱动和分子途径将被确定与一个结构化的,
可解释的深度学习方法和基因-基因相互作用效应,通过利用已识别的患者亚型
与半监督的基于图的聚类方法;这两种方法都是可能的,
MVP中存在的量表的个人水平(基因型和表型)数据,我们希望他们
加强基因靶点优先排序和药物发现的努力。第二,每一种基因的插补基因失调
MVP中的个体将与干扰原参考文库整合(描述治疗性干扰原的作用)。
化合物对基因表达的影响)来鉴定化合物通过拮抗
预测的基因失调我们已经验证了这种方法的摘要级数据(来自GWAS),
广泛的疾病(自身免疫,神经精神和COVID-19)。在这里,我们建议使用相同的
在个体水平上的方法,以确定是否可以利用遗传学来排名潜在的治疗,
预测那些取得更好结果的人。第三,数据生成的规模及其融入
预测模型将为MVP科学界提供丰富的数据,
本提案的直接目标之外的其他疾病,这些疾病有可能增加我们的了解,
精确精神病学成功完成我们的研究将对我们的退伍军人产生巨大的影响
因为除了巨大的痛苦负担和经济成本之外,严重的精神疾病增加了
退伍军人的死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Roussos其他文献
Panagiotis Roussos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Roussos', 18)}}的其他基金
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
- 批准号:
10724843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multiethnic genomic epigenomic and transcriptomic fine-mapping and functional validation analysis of schizophrenia and bipolar disorder risk loci
精神分裂症和躁郁症风险位点的多种族基因组表观基因组和转录组精细定位和功能验证分析
- 批准号:
10541205 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multiethnic genomic epigenomic and transcriptomic fine-mapping and functional validation analysis of schizophrenia and bipolar disorder risk loci
精神分裂症和躁郁症风险位点的多种族基因组表观基因组和转录组精细定位和功能验证分析
- 批准号:
10116719 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multiethnic genomic epigenomic and transcriptomic fine-mapping and functional validation analysis of schizophrenia and bipolar disorder risk loci
精神分裂症和双相情感障碍风险位点的多种族基因组表观基因组和转录组精细定位和功能验证分析
- 批准号:
10323051 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
- 批准号:
10436137 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
- 批准号:
10512763 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Large-scale transcriptome and epigenome association analysis across multiple traits
跨多个性状的大规模转录组和表观基因组关联分析
- 批准号:
9483393 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Risk genetic variants and cis regulation of gene expression in Bipolar Disorder
双相情感障碍的风险遗传变异和基因表达的顺式调控
- 批准号:
9082676 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Higher Order Chromatin and Genetic Risk for Alzheimer's Disease
高阶染色质和阿尔茨海默病的遗传风险
- 批准号:
10317310 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Higher Order Chromatin and Genetic Risk for Alzheimer's Disease
高阶染色质和阿尔茨海默病的遗传风险
- 批准号:
9134035 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship