Mouse vestibular regeneration and function
小鼠前庭再生和功能
基本信息
- 批准号:10528434
- 负责人:
- 金额:$ 58.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAccelerationAdultAgeAlgorithmic AnalysisAnimalsBioinformaticsCandidate Disease GeneCell SurvivalCell physiologyCellsChickensCochleaDataData AnalysesDimensionsDiseaseDizzinessElectric CapacitanceElectrophysiology (science)EpitheliumEquilibriumEvoked PotentialsFunctional disorderGene ExpressionGenesGeneticGoalsHair CellsHistologicHistologyHumanImpairmentIn Situ HybridizationLabelLegal patentMammalsMapsMeasurementMeasuresMechanoreceptor CellMethodsMorphologyMusNatural regenerationOrganPhysiologyPropertyRecoveryRecovery of FunctionResearchRoleSensorySensory HairSupporting CellSynapsesTechniquesTechnologyTestingTimeTransgenic MiceTransgenic OrganismsUtricle structureVertigoVestibular Hair CellsWorkZebrafishcandidate identificationcell regenerationdesigneffective therapyexperimental studygain of functiongene discoverygene expression databasegenetic signaturehair cell regenerationimprovedin vivoinsightloss of functionmechanotransductionmouse modelnerve supplynovelorgan regenerationoverexpressionpartial recoverypreventregeneration modelrepairedresponserestorationsingle-cell RNA sequencingspatiotemporalstem cellstranscription factortranscriptomevesicular release
项目摘要
Abstract:
Sensory hair cells are required for balance function. Vestibular hair cell degeneration causes balance
dysfunction/hypofunction manifested as dizziness and vertigo. While the mammalian cochlea lacks the ability to
regenerate lost hair cells, a limited degree of spontaneous regeneration occurs in the utricle, a vestibular organ
detecting linear acceleration. Recent studies using fate-mapping techniques have pinpointed supporting cells as
precursors of regenerated hair cells. However, it is not clear whether regenerated hair cells are fully functional
and if organ function recovers. In preliminary experiments we have characterized hair cell degeneration and
regeneration in the mature mouse utricle and also a loss followed by recovery of vestibular evoked potentials
(VsEP) in vivo. The first aim of this proposal is to determine if increasing hair cell regeneration improves the
recovery of vestibular function. Specifically, regenerated hair cells labeled via fate-mapping are probed via
histology and electrophysiology to assess bundle morphology, mechanosensitvity, basolateral currents, and
synaptic properties including vesicle release. In parallel, VsEP responses are measured and compared to
histologic and electrophysiological measures. Next, by overexpressing Atoh1 via a transgenic approach, we will
study the histology and electrophysiology of Atoh1-overexpressing hair cells and also the overall VsEP
responses. In the second aim, we will determine if Atoh1 deletion prevents hair cell regeneration and the recovery
of VsEP responses. In parallel, fate-mapped, surviving hair cells will be examined for possible repair via histology
and electrophysiology. To gain an unbiased insight into the genetic signature of hair cell progenitors and surviving
hair cells, the third aim is designed to examine the damaged mature mouse utricle using single cell RNA
sequencing technologies. Here the first goal is to discover the genetic landscape of hair cell progenitors and
surviving hair cells in the damaged utricle. Secondly, we will examine the gene expression of the undamaged
and damaged utricle after Atoh1 overexpression. Lastly, we will use bioinformatic approaches to delineate the
trajectory of the spontaneous and Atoh1-enhaced supporting cell-hair cell transition and validate this
histologically. In summary, we will apply state-of-the art technologies (vestibular physiology, hair cell physiology,
single cell RNA-seq, bioinformatic strategies) to study vestibular hair cell regeneration in transgenic mouse
models. We have assembled a team of experts who have worked together to collect promising preliminary data.
At the end of this 5-year proposal, we will have 1) determined the relationship between hair cell regeneration
and functional recovery and 2) revealed and temporally ordered novel genes during mammalian hair cell
regeneration.
文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Gi-Lun Cheng其他文献
Alan Gi-Lun Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Gi-Lun Cheng', 18)}}的其他基金
Diversification of the mechanotransduction complex in vestibular hair cells
前庭毛细胞中机械转导复合体的多样化
- 批准号:
10734358 - 财政年份:2023
- 资助金额:
$ 58.73万 - 项目类别:
Mentoring Patient Oriented Research in sensory disorders
指导以患者为导向的感觉障碍研究
- 批准号:
10644567 - 财政年份:2023
- 资助金额:
$ 58.73万 - 项目类别:
Molecular basis of mammalian cochlear regeneration
哺乳动物耳蜗再生的分子基础
- 批准号:
10682272 - 财政年份:2023
- 资助金额:
$ 58.73万 - 项目类别:
Stanford Clinician Scientist Training Program
斯坦福临床医生科学家培训计划
- 批准号:
10427050 - 财政年份:2022
- 资助金额:
$ 58.73万 - 项目类别:
Stanford Clinician Scientist Training Program
斯坦福临床医生科学家培训计划
- 批准号:
10591580 - 财政年份:2022
- 资助金额:
$ 58.73万 - 项目类别:
Clinician-scientist training program in otolaryngology
耳鼻喉科临床医生科学家培训计划
- 批准号:
10368168 - 财政年份:2016
- 资助金额:
$ 58.73万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 58.73万 - 项目类别:
Standard Grant