Understanding Behavioral Variability in Outcome After SCI
了解 SCI 后结果的行为变异
基本信息
- 批准号:10528065
- 负责人:
- 金额:$ 42.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectiveAnimal ExperimentationAnimal ModelAnimalsAutonomic DysfunctionAutonomic DysreflexiaBehaviorBehavioralBiological MarkersBiometryBlood PressureCardiovascular systemClinicalControlled StudyContusionsDataDatabasesDetectionDevelopmentDiseaseDisease ManagementEngineeringEventFeedbackFunctional disorderGoalsHealthHealth TechnologyHeart RateHomeIndividualLeadLinkMachine LearningMeasuresMechanicsModelingMonitorMotivationMotorMusOutcomePopulationPublicationsRespirationSensorySeriesSignal TransductionSkin TemperatureSleepSleep ArchitectureSleep disturbancesStressSupervisionTechnologyTelemetryTestingThermographyTimeTrainingWheelchairsbasebiosignatureclinical applicationclinical developmentclinically relevantcombinatorialdata miningdigitaldigital healthhealth managementindexingindividualized medicineinsightinstrumentmachine learning algorithmmedical specialtiesmouse modelnovelnovel strategiespainful neuropathypre-clinicalpredictive markerpreferencepreventprototyperespiratorysensorsensor technologysham surgeryspatiotemporalsupervised learningtranslational impactunsupervised learningwearable devicewearable sensor technology
项目摘要
PROJECT SUMMARY
Opportunities now exist to implement a paradigm shift in health management towards individualized physio-
behavioral (biometric) monitoring - to predict, to prevent, and to better manage disease using wearable
technologies, as well as embedded sensor technologies within wheelchairs as well as within the home.
Our broad objective is to interpret collected combinatorial changes in the same biometric variables captured
noninvasively during the progression of SCI in naturally behaving mice. In well-controlled animal studies, we
propose to apply machine learning algorithms to identify ‘digital biosignatures’ that are predictive to disease
emergence and/or expression, and therefore of use in feedback-based mitigation. To achieve this, we have
engineered specialty instrumented mouse home-cages with commercially available sensors that enable continuous
long-term noninvasive home cage capture of these biometrics to prototype development of such digital
biosignatures.
Emphasis is on understanding temporal interrelations in the emergence of sleep disturbances, neuropathic pain,
thermoregulatory dysfunction, cardiorespiratory dysfunction and autonomic crises (autonomic dysreflexia) after
SCI. Accordingly, home cage sensor-based capture includes all motor events, respiration, heart rate, 3-state sleep,
skin temperature thermography and sensory preference testing.
Our overarching hypothesis is that combined continuous capture several variables during the progression of SCI
will identify novel ‘digital biosignatures’ that link to emergent dysfunction. The longer-term goal is to incorporate
capture of digital biosignatures into real-time feedback-based approaches that limit disease expression.
Two SCI models will be used to quantify variability in emergent dysfunction with the temporal correspondence
of alterations in measured biometrics: [1] T9-10 contusion SCI and [2] T2-3 complete transection. For both
experimental series, variables will be continuously captured in specialty instrumented home cages located in
environmentally controlled chambers both before and for 10 weeks after SCI or sham surgery. Captured
biometrics will be further categorized for machine learning based on measures of SCI -induced dysfunction from
more conventional tests of sensory and autonomic dysfunction to link noninvasive biometric digital biosignatures
with established measures physio-behavioral dysfunction after SCI.
If successful, capturing digital biosignatures of dysfunction in real time may have translational impact on
individualized medicine applications in SCI individuals. This is because acquired biosignatures may then serve a
template recognition function from analogously captured biometrics obtained from embedded/wearable sensors
in clinical populations.
项目摘要
现在有机会在健康管理方面实现向个性化生理治疗的范式转变,
行为(生物识别)监测-使用可穿戴设备预测、预防和更好地管理疾病
技术,以及嵌入式传感器技术在轮椅以及在家里。
我们的广泛目标是解释收集的组合变化,在相同的生物特征变量捕获
在自然行为小鼠的SCI进展过程中无创地进行。在严格控制的动物研究中,我们
我建议应用机器学习算法来识别预测疾病的“数字生物特征”
出现和/或表达,并因此用于基于反馈的缓解。为了实现这一目标,我们必须
设计的专用仪器化小鼠笼,其具有市售传感器,
长期非侵入性的家庭笼捕获这些生物特征,以原型开发这种数字
生物特征
重点是了解睡眠障碍,神经性疼痛,
体温调节功能障碍、心肺功能障碍和自主神经危象(自主神经反射障碍)
SCI.因此,基于家庭笼传感器的捕获包括所有运动事件、呼吸、心率、3状态睡眠,
皮肤温度热成像和感觉偏好测试。
我们的总体假设是,在SCI的进展过程中,
将识别与紧急功能障碍有关的新的“数字生物特征”。长期目标是将
将数字生物特征捕获到基于实时反馈的方法中,以限制疾病的表达。
两个SCI模型将用于量化与时间对应的紧急功能障碍的变化
测量的生物统计学变化:[1] T9-10挫伤SCI和[2] T2-3完全横切。为
实验系列中,变量将在位于
在SCI或假手术之前和之后10周,在环境控制的腔室中进行。捕获
基于SCI引起的功能障碍的测量,生物特征将被进一步分类用于机器学习,
更传统的感觉和自主神经功能障碍测试,以连接非侵入性生物计量数字生物签名
与SCI后的生理行为功能障碍的既定措施。
如果成功的话,在真实的时间内捕获功能障碍的数字生物特征可能会对
在SCI患者中的个体化医疗应用。这是因为获得的生物签名然后可以服务于
从嵌入式/可穿戴传感器获得的模拟捕获生物特征的模板识别功能
在临床人群中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAWN HOCHMAN其他文献
SHAWN HOCHMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAWN HOCHMAN', 18)}}的其他基金
Modifiability of Conduction Across Preganglionic Axonal Branch Points
跨节前轴突分支点传导的可修改性
- 批准号:
10196286 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
Recruitment principles and injury-induced plasticity in thoracic paravertebral sympathetic postganglionic neurons
胸椎旁交感节后神经元的募集原理和损伤诱导的可塑性
- 批准号:
9368086 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Recruitment principles and injury-induced plasticity in thoracic paravertebral sympathetic postganglionic neurons
胸椎旁交感节后神经元的募集原理和损伤诱导的可塑性
- 批准号:
10208977 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
7900235 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8627658 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8231468 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8044688 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
Control of sensory function in mammalian spinal cord
哺乳动物脊髓感觉功能的控制
- 批准号:
8426151 - 财政年份:2010
- 资助金额:
$ 42.62万 - 项目类别:
DOPAMINERGIC CONTROL OF SPINAL CORD AND RESTLESS LEGS
多巴胺能控制脊髓和不宁腿
- 批准号:
6681382 - 财政年份:2003
- 资助金额:
$ 42.62万 - 项目类别:
DOPAMINERGIC CONTROL OF SPINAL CORD AND RESTLESS LEGS
多巴胺能控制脊髓和不宁腿
- 批准号:
6924593 - 财政年份:2003
- 资助金额:
$ 42.62万 - 项目类别:
相似海外基金
Development of a Drosophila-based platform to replace and reduce animal experimentation in epilepsy research
开发基于果蝇的平台来取代和减少癫痫研究中的动物实验
- 批准号:
NC/V001051/1 - 财政年份:2020
- 资助金额:
$ 42.62万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Ethical Issues in Animal Experimentation
博士论文研究:动物实验的伦理问题
- 批准号:
1424484 - 财政年份:2014
- 资助金额:
$ 42.62万 - 项目类别:
Standard Grant
Tissue formation involving stem/progenitor cell research and animal experimentation (N01)
涉及干/祖细胞研究和动物实验的组织形成(N01)
- 批准号:
30245585 - 财政年份:2006
- 资助金额:
$ 42.62万 - 项目类别:
Collaborative Research Centres
Animal Experimentation system as an infrastructure to support translational progression of diabetes research to medical practice
动物实验系统作为支持糖尿病研究向医学实践转化的基础设施
- 批准号:
17200029 - 财政年份:2005
- 资助金额:
$ 42.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Animal experimentation and cardiac phenotyping of transgenic mouse models
转基因小鼠模型的动物实验和心脏表型分析
- 批准号:
13327687 - 财政年份:2005
- 资助金额:
$ 42.62万 - 项目类别:
Research Units














{{item.name}}会员




