Development of carbon-nanotube fiber based microelectrode array for neuroscience
用于神经科学的基于碳纳米管纤维的微电极阵列的开发
基本信息
- 批准号:10527492
- 负责人:
- 金额:$ 43.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse reactionsAgarAreaAutopsyBiologicalBrainBrain DiseasesBypassCaliberCarbon NanotubesCellsCharacteristicsChargeChemicalsChronicCicatrixClinicalCognitiveDegenerative DisorderDevelopmentDevicesDimensionsElectrodesElectron TransportElectrophysiology (science)EncapsulatedEnvironmentEpilepsyEvaluationFailureFast ElectronFiberForeign BodiesGelGenerationsHistologicHourHumanImplantImplantation procedureIn VitroIndividualInflammatoryInflammatory ResponseInjectionsInjuryInsectaIridiumMeasurementMechanicsMetalsMethodsMicroelectrodesModelingMotorNatureNerve TissueNervous System PhysiologyNeuronsNeurosciencesNeurosciences ResearchNeurotransmittersParkinson DiseasePenetrationPerformancePhosphorylcholinePolyethylenesPolymersPositioning AttributePreparationProcessProductionPropertyProtocols documentationRattusReactionRecoveryResolutionSensorySiliconSiteSourceSpeedSurfaceTechnologyTestingTimeTissuesVisceralVisual CortexWaterbasebiomaterial compatibilitybrain circuitrybrain computer interfacebrain tissuecarbon fiberchemical stabilitydetection sensitivityelectric impedanceexperimental studyflexibilityhydrophilicityimplantationin vivoiridium oxidelithographyloss of functionmechanical propertiesmetal oxidemicrostimulationneural stimulationneuron lossneuroprosthesisnovel strategiesparylene Crelating to nervous systemresearch studyresponse
项目摘要
PROJECT SUMMARY/ABSTRACT
The objective of this proposal is to develop, evaluate the potential of Carbon Nanotube (CNT) fibers
Microelectrode Arrays (MEAs) and test their performance in-vivo by inserting them in the visual cortex
of rats in acute and chronic settings. Its novelty relies on the reduced diameter, super-hydrophilic
coating nature of the CNT fibers, and takes advantage of the chemical inertness, flexibility and large
surface area of CNTs. Additional feature of these proposal is the hexagonal packing of 7 CNT fibers
into ~50 µm strands to provide the required stiffness for insertion, and subsequent unraveling into 7
individual electrodes upon insertion and interaction with water. Proposed approach will allow to pack
112 electrodes into a 4x4 array, and will be able to connect to metal contact board produced with
traditional lithography. Currently, most commands emitted from the brain require electrical currents
transported through nerves and tissue to elicit cognitive, sensory, visceral, and motor functions.
Unfortunately, these connection paths are often perturbed due to traumatic or degenerative diseases
causing complete loss of function. Multiple brain diseases like epilepsy and Parkinson's require
microelectrode stimulation as part of the treatment and recovery. Most current technology relies on
metal-, metal oxide or silicon-based electrodes that have a mechanical mismatch and are considered
foreign by cells and neurons causing adverse reactions through inflammatory responses, biofouling
and scar tissue formation as they try to encapsulate the electrode. Moreover, metals employed as
electrodes have: significantly smaller surface area, larger impedance, and reduced charge injection
limit (CIL). To solve these electrode deficiencies currently employed in neural stimulation and recording,
this team has developed unidirectional, biocompatible, densely-packed CNT fiber microelectrodes that
to this date show impressive CIL (15.6 mC/cm2), fast electron transport, and lower impedance than
metals. Surprisingly, these CNT fibers can be assembled up to 16 m/s linear speeds, offering great
potential towards scalability. We expect to demonstrate the potential of our fiber for long them
stimulation and recording, as well as compare their performance as MEAs to the state-of-the-art carbon
fiber, and iridium based MEAs.
项目总结/摘要
本提案的目的是开发、评估碳纳米管(CNT)纤维的潜力
微电极阵列(MEA),并通过将其插入视觉皮层来测试其在体内的性能
在急性和慢性环境中的老鼠。其新奇依赖于减小的直径,超亲水性
涂层性质的碳纳米管纤维,并利用化学惰性,灵活性和大
CNT的表面积。这些建议的附加特征是7根CNT纤维的六边形堆积
为插入提供所需的刚度,随后解开成7个
在插入和与水的相互作用下的单个电极。建议的方法将允许打包
112个电极成4x 4阵列,并将能够连接到金属接触板生产,
传统的平版印刷。目前,大脑发出的大多数指令都需要电流
通过神经和组织运输以引起认知、感觉、内脏和运动功能。
不幸的是,这些连接路径经常由于创伤性或退行性疾病而受到干扰
导致功能完全丧失。癫痫和帕金森等多种脑部疾病
微电极刺激作为治疗和恢复的一部分。目前的大多数技术都依赖于
金属、金属氧化物或硅基电极具有机械失配,
细胞和神经元通过炎症反应、生物污损引起不良反应
和疤痕组织的形成。此外,金属用作
电极具有:显著更小的表面积、更大的阻抗和减少的电荷注入
限值(CIL)。为了解决目前在神经刺激和记录中使用的这些电极缺陷,
这个团队已经开发出单向的、生物相容的、密集堆积的CNT纤维微电极,
到目前为止,显示出令人印象深刻的CIL(15.6 mC/cm 2),快速的电子传输和较低的阻抗,
金属.令人惊讶的是,这些CNT纤维可以以高达16 m/s的线速度组装,
可扩展性的潜力。我们希望证明我们的纤维的潜力,
刺激和记录,以及比较他们的性能作为多边环境协定的国家的最先进的碳
纤维和铱基MEA。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications.
- DOI:10.3390/bioengineering10060647
- 发表时间:2023-05-26
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noe Alvarez其他文献
Noe Alvarez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A personalised approach to manage adverse reactions to CFTR modulator therapy in patients with cystic fibrosis
治疗囊性纤维化患者 CFTR 调节剂治疗不良反应的个性化方法
- 批准号:
MR/X00094X/1 - 财政年份:2022
- 资助金额:
$ 43.14万 - 项目类别:
Research Grant
Identifying genetic polymorphisms and elucidating polygenic architecture associated with adverse reactions due to rituximab
识别遗传多态性并阐明与利妥昔单抗不良反应相关的多基因结构
- 批准号:
22K15910 - 财政年份:2022
- 资助金额:
$ 43.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanistic study of sulfa drug-induced severe cutaneous adverse reactions by focusing on HLA-A*11:01
以HLA-A*为重点的磺胺类药物致严重皮肤不良反应机制研究11:01
- 批准号:
22K06738 - 财政年份:2022
- 资助金额:
$ 43.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
- 批准号:
449379 - 财政年份:2020
- 资助金额:
$ 43.14万 - 项目类别:
Studentship Programs
Significance of gamma-chain in severe cutaneous adverse reactions
伽马链在严重皮肤不良反应中的意义
- 批准号:
19K17779 - 财政年份:2019
- 资助金额:
$ 43.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Historical sociology of adverse reactions related to vaccination in Japan
日本疫苗接种不良反应的历史社会学
- 批准号:
18K00267 - 财政年份:2018
- 资助金额:
$ 43.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SEARCH (active Surveillance and Evaluation of Adverse Reactions in Canadian Healthcare) & PREVENT (Pharmacogenomics of Adverse Reaction EVEnts National Team)
SEARCH(加拿大医疗保健不良反应的主动监测和评估)
- 批准号:
379425 - 财政年份:2018
- 资助金额:
$ 43.14万 - 项目类别:
Operating Grants
IGF::OT::IGF SBIR Phase II: Topic 338 - Predictive Biomarkers of Adverse Reactions to Prostrate Cancer Radiotherapy
IGF::OT::IGF SBIR II 期:主题 338 - 前列腺癌放射治疗不良反应的预测生物标志物
- 批准号:
9576448 - 财政年份:2017
- 资助金额:
$ 43.14万 - 项目类别:
Development of in silico prediction method for idiosyncratic adverse reactions associated with HLA genotypes
与 HLA 基因型相关的特殊不良反应的计算机预测方法的开发
- 批准号:
16K15156 - 财政年份:2016
- 资助金额:
$ 43.14万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Characterising the Immune Response to Drugs That Cause Idiosyncratic Adverse Reactions
表征对引起特殊不良反应的药物的免疫反应
- 批准号:
367156 - 财政年份:2016
- 资助金额:
$ 43.14万 - 项目类别:
Studentship Programs