Computational Toolkit for Normalizing the Impact of CT Acquisition and Reconstruction on Quantitative Image Features
用于标准化 CT 采集和重建对定量图像特征影响的计算工具包
基本信息
- 批准号:10530062
- 负责人:
- 金额:$ 60.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressAdoptedAdoptionAffectAgreementAlgorithmsAreaCharacteristicsChestClassificationClinicalClinical TrialsCollaborationsCollectionCommunitiesCoupledDataData SetDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease ProgressionDoseEnsureFosteringGoalsHeadHigh Resolution Computed TomographyImageImage AnalysisIndustryIndustry CollaborationInfarctionInstitutionInterstitial Lung DiseasesLinkLung noduleMachine LearningMalignant neoplasm of lungMapsMedical ImagingMethodsModelingMorphologyNoduleOutcomePatient-Focused OutcomesPatientsPerformancePhotonsPhysicsPlayProcessProtocols documentationPublicationsPulmonary EmphysemaRadiation Dose UnitReproducibilityResearchResourcesRoleScanningSeminalSeverity of illnessSliceSoftware ToolsSourceStandardizationStrokeSumSurrogate EndpointTechniquesTechnologyTextureThickThinnessTrainingVariantVisualizationWorkX-Ray Computed Tomographybasebiomarker developmentbiomarker validationbrain tissueclinical practiceclinical translationcomputed tomography screeningdisease phenotypeimprovedinnovationlarge datasetsmachine learning modelmultidisciplinaryneural networknovelopen sourceopen source toolpredictive modelingprospectivequantitative imagingradiomicsreconstructionscreeningtool
项目摘要
Quantitative image features (QIFs) such as radiomic and deep features hold enormous potential to improve the
detection, diagnosis, and treatment assessment of a wide range of diseases. Generated from clinically acquired
Computed Tomography (CT) scans, QIFs represent small pixel-wise changes that may be early indicators of
disease progression. However, detecting these changes is complicated by variations in how CT scans are
acquired and reconstructed. Ensuring repeatable and reproducible QIFs is necessary for developing predictive
models that achieve consistent performance across different clinical settings. This project's premise is that QIFs
are sensitive to CT parameters such as radiation dose level, slice thickness, reconstruction kernel, and
reconstruction method. The combined interactions among these parameters result in unique image conditions,
each yielding its own QIF value. Moreover, some clinical tasks and algorithms are more sensitive to differences
in QIF values than others. We hypothesize that a systematic, task-dependent framework to characterize the
impact of variability in CT parameters and effectively mitigate them will result in more consistent QIF values and
the performance of prediction models. Three interrelated innovations will be pursued in this work: 1) a novel
framework for characterizing the impact of different acquisition and reconstruction parameters on QIFs
and ML models using patient scans with known clinical outcomes in multiple domains; 2) a systematic
approach for selecting an optimal mitigation technique and evaluating the impact of normalization; and
3) an open-source software toolkit that formalizes the process of CT normalization, addressing real-
world use cases developed by academic and industry collaborators. In Aim 1, we will evaluate how multiple
CT parameters influence QIF values and model performance. Utilizing metrics of agreement and a heat map-
based visualization, we will determine under which image acquisition and reconstruction conditions the QIFs and
model performance are consistent. In Aim 2, we will assess and enhance normalization techniques for mitigating
the impact of differences in acquisition and reconstruction, targeting the set of imaging conditions that are most
relevant to a clinical task. In Aim 3, we will engage a spectrum of external stakeholders to guide the development
and adoption of a software toolkit called CT-NORM. Three distinct clinical domains will drive our efforts: lung
nodule detection (which relies on identifying small regions of high contrast differences to identify nodules),
interstitial lung disease quantification (which depends on characterizing texture differences), and ischemic core
assessment (which relies on detecting low contrast differences in brain tissue). CT-NORM will provide the
scientific community with an approach and a unified toolkit to characterize and mitigate the impact of
reconstruction and acquisition parameters on QIFs and prediction model performance. By addressing critical
sources of variability, we will improve the process of generating QIFs and facilitate the discovery of precise and
reproducible imaging phenotypes of disease.
定量图像特征(QIF),如放射性和深度特征,具有巨大的潜力,以改善
检测、诊断和治疗评估多种疾病。由临床获得的
计算机断层扫描(CT),QIF代表小的像素变化,可能是早期指标,
疾病进展。然而,检测这些变化是复杂的变化,在如何CT扫描是
获取并重建。确保可重复和可再现的QIF对于开发预测性
在不同的临床环境中实现一致性能的型号。这个项目的前提是,
对CT参数敏感,如辐射剂量水平、切片厚度、重建核,
重建方法这些参数之间的组合相互作用导致独特的图像条件,
每一个产生其自己的QIF值。而且,一些临床任务和算法对差异更敏感
在QIF值中,我们假设,一个系统的,依赖于任务的框架来描述
CT参数变化的影响,并有效地减轻它们将导致更一致的QIF值,
预测模型的性能。本书将追求三个相互关联的创新:1)一部小说
用于表征不同采集和重建参数对QIF影响的框架
和ML模型,使用患者扫描,在多个领域中具有已知的临床结果; 2)系统的
选择最佳缓解技术和评估正常化影响的方法;
3)一个开源的软件工具包,正式的CT标准化的过程,解决真实的-
由学术界和行业合作者开发的全球用例。在目标1中,我们将评估
CT参数影响QIF值和模型性能。利用协议指标和热图-
基于可视化,我们将确定在哪些图像采集和重建条件下QIF和
模型的性能是一致的。在目标2中,我们将评估和增强规范化技术,
在采集和重建中的差异的影响,针对成像条件的集合,
与临床任务相关。在目标3中,我们将邀请一系列外部持份者来指导发展
并采用了一个名为CT-NORM的软件工具包。三个不同的临床领域将推动我们的努力:
结节检测(其依赖于识别高对比度差异的小区域以识别结节),
间质性肺病量化(取决于表征纹理差异)和缺血性核心
评估(其依赖于检测脑组织中的低对比度差异)。CT-NORM将提供
科学界提供一种方法和一个统一的工具包,
QIF的重建和采集参数以及预测模型性能。通过解决关键问题,
变异性的来源,我们将改进生成QIF的过程,并促进发现精确和
疾病的可重复成像表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Hsu其他文献
William Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Hsu', 18)}}的其他基金
An AI/ML-ready Dataset for Investigating the Effect of Variations in CT Acquisition and Reconstruction
用于研究 CT 采集和重建变化影响的 AI/ML 数据集
- 批准号:
10842635 - 财政年份:2022
- 资助金额:
$ 60.36万 - 项目类别:
Computational Toolkit for Normalizing the Impact of CT Acquisition and Reconstruction on Quantitative Image Features
用于标准化 CT 采集和重建对定量图像特征影响的计算工具包
- 批准号:
10426507 - 财政年份:2021
- 资助金额:
$ 60.36万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Research Grant