Functional long noncoding RNAs in neural development

神经发育中的功能性长非编码RNA

基本信息

  • 批准号:
    10530928
  • 负责人:
  • 金额:
    $ 63.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Long noncoding RNAs (lncRNAs) have been implicated in a wide range of human neurological disorders including cancer, developmental delay, psychiatric and neurodegenerative disease. While it is known that the brain is enriched in specific lncRNAs, relatively few have been characterized in terms of function and molecular mechanism. Our long-term goal is to understand the function and molecular mechanisms of lncRNAs in neurodevelopment. Such fundamental knowledge is critical to understanding how this large aspect of the noncoding genome regulates brain development and disease. We have taken two approaches for the study of lncRNA function. The first approach is a “traditional” molecular-genetic study of a brain-specific, evolutionarily conserved lncRNA that is a potent regulator of neural stem cells (NSCs). In previous studies, we identified a novel lncRNA transcript that we named Pnky (Pou3f2 intergenic non-koding). In cultured NSCs, either Pnky transcript knockdown or Pnky conditional knockout (Pnky-cKO) increases neuronal production by ~4-fold. Pnky is required for proper cortical neurogenesis in vivo, and the expression of Pnky from a BAC transgene (BAC-Pnky) fully rescues Pnky-deletion – including at the level of the transcriptome – indicating that this lncRNA functions in trans. Pnky interacts with the splicing regulator PTBP1 (Polypyrimidine tract binding protein 1) – a critical regulator of neurogenesis from NSCs – and Pnky appears to function in the same molecular pathway as PTBP1. Preliminary Studies demonstrate that Pnky folds into a compact, monodisperse state that contains intricate structures including a pseudoknot, which is a structural module known to have important function in noncoding RNAs. Given these data, we hypothesize that Pnky contains functional structural modules and regulates the function of PTBP1. Our second approach is to use systematic functional screens to discover key principles of lncRNA genome function. In Preliminary Studies, we used CRISPRi to screen in parallel 10,671 lncRNA and 18,905 mRNA genes for roles in the neural induction of NSCs from human induced pluripotent stem cells (iPSCs). We also performed CRISPRi perturbation coupled with droplet- based single-cell RNA-Seq (Perturb-Seq) for hundreds of screen hits. Based on results from these systematic studies, our working hypothesis is that functional lncRNAs – in comparison to coding genes – are enriched for roles in “focusing” differentiation to specific neural cell types. To further test this hypothesis, we will study lncRNA function in human brain organoids and extend our screens to analyze neurogenesis. Determining the unique functional roles of lncRNAs and coding genes at genome-scale will have important, broad impact on the interpretation of transcriptomic and epigenomic studies of neurodevelopment. Together, by studying lncRNA function at the level of individual transcripts and also at genome scale, we expect to gain fundamental insights into the function of this large aspect of the noncoding genome.
ABSTRACT Long noncoding RNAs (lncRNAs) have been implicated in a wide range of human neurological disorders including cancer, developmental delay, psychiatric and neurodegenerative disease. While it is known that the brain is enriched in specific lncRNAs, relatively few have been characterized in terms of function and molecular mechanism. Our long-term goal is to understand the function and molecular mechanisms of lncRNAs in neurodevelopment. Such fundamental knowledge is critical to understanding how this large aspect of the noncoding genome regulates brain development and disease. We have taken two approaches for the study of lncRNA function. The first approach is a “traditional” molecular-genetic study of a brain-specific, evolutionarily conserved lncRNA that is a potent regulator of neural stem cells (NSCs). In previous studies, we identified a novel lncRNA transcript that we named Pnky (Pou3f2 intergenic non-koding). In cultured NSCs, either Pnky transcript knockdown or Pnky conditional knockout (Pnky-cKO) increases neuronal production by ~4-fold. Pnky is required for proper cortical neurogenesis in vivo, and the expression of Pnky from a BAC transgene (BAC-Pnky) fully rescues Pnky-deletion – including at the level of the transcriptome – indicating that this lncRNA functions in trans. Pnky interacts with the splicing regulator PTBP1 (Polypyrimidine tract binding protein 1) – a critical regulator of neurogenesis from NSCs – and Pnky appears to function in the same molecular pathway as PTBP1. Preliminary Studies demonstrate that Pnky folds into a compact, monodisperse state that contains intricate structures including a pseudoknot, which is a structural module known to have important function in noncoding RNAs. Given these data, we hypothesize that Pnky contains functional structural modules and regulates the function of PTBP1. Our second approach is to use systematic functional screens to discover key principles of lncRNA genome function. In Preliminary Studies, we used CRISPRi to screen in parallel 10,671 lncRNA and 18,905 mRNA genes for roles in the neural induction of NSCs from human induced pluripotent stem cells (iPSCs). We also performed CRISPRi perturbation coupled with droplet- based single-cell RNA-Seq (Perturb-Seq) for hundreds of screen hits. Based on results from these systematic studies, our working hypothesis is that functional lncRNAs – in comparison to coding genes – are enriched for roles in “focusing” differentiation to specific neural cell types. To further test this hypothesis, we will study lncRNA function in human brain organoids and extend our screens to analyze neurogenesis. Determining the unique functional roles of lncRNAs and coding genes at genome-scale will have important, broad impact on the interpretation of transcriptomic and epigenomic studies of neurodevelopment. Together, by studying lncRNA function at the level of individual transcripts and also at genome scale, we expect to gain fundamental insights into the function of this large aspect of the noncoding genome.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIEL A LIM其他文献

DANIEL A LIM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIEL A LIM', 18)}}的其他基金

A new model for understanding a brain tumor epigenetic driver
理解脑肿瘤表观遗传驱动因素的新模型
  • 批准号:
    10432699
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
A new model for understanding a brain tumor epigenetic driver
理解脑肿瘤表观遗传驱动因素的新模型
  • 批准号:
    10588174
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
Functional long noncoding RNAs in neural development
神经发育中的功能性长非编码RNA
  • 批准号:
    10632048
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
  • 批准号:
    10397619
  • 财政年份:
    2020
  • 资助金额:
    $ 63.05万
  • 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
  • 批准号:
    10618153
  • 财政年份:
    2020
  • 资助金额:
    $ 63.05万
  • 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
  • 批准号:
    10212470
  • 财政年份:
    2020
  • 资助金额:
    $ 63.05万
  • 项目类别:
Long noncoding RNA regulation of neural stem cells
神经干细胞的长非编码RNA调控
  • 批准号:
    9105277
  • 财政年份:
    2016
  • 资助金额:
    $ 63.05万
  • 项目类别:
Role of MLL Chromatin Remodeling Factor in Neural Stem Cells
MLL 染色质重塑因子在神经干细胞中的作用
  • 批准号:
    7775068
  • 财政年份:
    2009
  • 资助金额:
    $ 63.05万
  • 项目类别:
Chromatin-based regulation of neural stem cells
基于染色质的神经干细胞调控
  • 批准号:
    10367124
  • 财政年份:
    2009
  • 资助金额:
    $ 63.05万
  • 项目类别:
Role of MLL Chromatin Remodeling Factor in Neural Stem Cells
MLL 染色质重塑因子在神经干细胞中的作用
  • 批准号:
    8195891
  • 财政年份:
    2009
  • 资助金额:
    $ 63.05万
  • 项目类别:

相似国自然基金

新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
  • 批准号:
    81000622
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
  • 批准号:
    31060293
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
  • 批准号:
    30960334
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
  • 批准号:
    10657993
  • 财政年份:
    2023
  • 资助金额:
    $ 63.05万
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10381163
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10531959
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10700991
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10518582
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10672973
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10585925
  • 财政年份:
    2022
  • 资助金额:
    $ 63.05万
  • 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
  • 批准号:
    10180000
  • 财政年份:
    2021
  • 资助金额:
    $ 63.05万
  • 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
  • 批准号:
    10049426
  • 财政年份:
    2021
  • 资助金额:
    $ 63.05万
  • 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10295809
  • 财政年份:
    2021
  • 资助金额:
    $ 63.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了