Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
基本信息
- 批准号:10397619
- 负责人:
- 金额:$ 37.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultArchitectureAreaBehaviorBehavioralBiological ModelsBrainCRISPR/Cas technologyChildhood Brain NeoplasmChromatinCognitive deficitsComplexCytoplasmic GranulesDataDevelopmentDiseaseEngineeringEnhancersEpigenetic ProcessGene DosageGene ExpressionGenesGeneticGenomeGenomic SegmentGenomicsGoalsHigher Order Chromatin StructureHippocampus (Brain)HistonesHumanHuman GenomeImpaired cognitionImpairmentIntellectual functioning disabilityKnowledgeLearningLifeLysineMalignant NeoplasmsMemoryMethodsMolecularMolecular Mechanisms of ActionMusMutant Strains MiceMutationNeurodevelopmental DisorderNeuronsNuclearOutcomePharmacotherapyPhenotypePopulationProcessProductionProteinsRegulator GenesResearchRoleStructureTestingTissuesTranscriptional Activationautism spectrum disorderbasecancer therapychromatin modificationdentate gyrusdrug developmentemotional behaviorexperimental studygene repressionhistone demethylasehuman diseasein vivoinhibitorinnovationinsightmouse developmentmouse modelnerve stem cellnervous system disorderneurodevelopmentneurogenesisnovelpostnatalpromoterrecruitsingle-cell RNA sequencingstem cell population
项目摘要
JMJD3 (KDM6B) is a chromatin regulator with roles central to normal development as well as a wide range of
human diseases including cancer and human neurological disorders. For instance, mutations in JMJD3 are
autosomal recessive for familial intellectual disability, and de novo JMJD3 mutations are associated with
autism spectrum disorder (ASD). An important next step to understanding genetic causes of complex diseases
is to study disease-associated genes in mouse models. While it is known that JMJD3 is important to certain
aspects of neural cell development, whether JMJD3 deficiency can actually cause cognitive dysfunction has
not been known. Preliminary Studies indicate that JMJD3 is critical for the development of the mouse
hippocampal dentate gyrus (DG). In the DG, granule neurons are generated throughout life from a population
of neural stem cells (NSCs). Defective DG neurogenesis impairs many hippocampal-dependent behaviors and
has been associated with cognitive deficits including that of intellectual disability and ASD. Without Jmjd3,
NSCs failed to become established in the adult DG, and granule neuron production was severely decreased
and abnormal. In these mice, hippocampal-dependent learning was defective. Heterozygous deletion of
Jmjd3 also resulted in abnormal postnatal DG development, indicating that this process is sensitive to gene
dosage. Aim 1 is to determine the role of Jmjd3 in DG neurogenesis. In vivo experiments will test the
hypothesis that Jmjd3 regulates the postnatal expansion and establishment of the DG NSC population, and
that even reduced Jmjd3 gene dosage causes cognitive dysfunction. Single cell RNA sequencing analysis will
provide molecular insights into the observed phenotype and help guide mechanistic studies of Aim 2. Aim 2 is
to determine the mechanisms by which JMJD3 regulates gene expression. JMJD3 has demethylase activity for
histone 3 lysine 27 trimethylation (H3K27me3), which is a chromatin modification associated with
transcriptional repression. To investigate demethylase-dependent and potential demethylase-independent
activities of JMJD3, we have developed innovative CRISPR-based technologies to recruit JMJD3 proteins to
the genome. By developing a novel, easy-to-use method for mapping lamina-associated domains (LADs) – a
repressive nuclear compartment – we have also found that JMJD3 in NSCs is enriched at the genomic LAD
“borders,” which are genomic regions enriched for transcriptional regulatory elements. Thus, we propose
investigating the role of JMJD3 in regulating this aspect of higher-order chromatin structure. The proposed
neurodevelopmental and behavioral analyses combined with mechanistic studies is expected to provide a
scientific framework in which to begin understanding how human JMJD3 mutations can cause disease. The
studies of JMJD3 mechanism is also expected to be important to the broader field of chromatin-based
epigenetics as well as nuclear compartment-associated genome organization – an emerging area of research.
JMJD3(KDM6B)是一种染色质调节因子,对正常发育以及广泛的
人类疾病,包括癌症和人类神经疾病。例如,JMJD3的突变是
家族性智能障碍的常染色体隐性遗传和新发现的JMJD3突变与
自闭症谱系障碍(ASD)。了解复杂疾病的遗传原因的重要下一步
是研究老鼠模型中与疾病相关的基因。虽然我们知道JMJD3对某些人来说很重要
在神经细胞发育方面,JMJD3缺陷是否真的会导致认知功能障碍
不为人所知。初步研究表明JMJD3对小鼠的发育至关重要
海马齿状回(DG)。在DG中,颗粒神经元是由一个种群在整个生命周期中产生的
神经干细胞。DG神经发生缺陷损害许多海马区依赖行为和
与认知缺陷有关,包括智力残疾和自闭症。如果没有Jmjd3,
成年DG内NSCs未能建立,颗粒神经元生成严重减少。
而且不正常。在这些小鼠中,依赖海马体的学习是有缺陷的。杂合性缺失
JMJD3还导致出生后DG发育异常,表明这一过程对基因敏感
剂量。目的1确定Jmjd3在DG神经发生中的作用。活体实验将测试
假设Jmjd3调节DG NSC种群的出生后扩张和建立,以及
即使减少Jmjd3基因的剂量也会导致认知功能障碍。单细胞RNA测序分析将
提供对观察到的表型的分子见解,并帮助指导目标2的机制研究。目标2是
目的:探讨JMJD3调控基因表达的机制。JMJD3具有脱甲基酶活性
组蛋白3赖氨酸27三甲基化(H3K27me3),这是一种与
转录抑制。研究脱甲基酶依赖性和潜在的脱甲基酶非依赖性
JMJD3的活动,我们开发了基于CRISPR的创新技术来招募JMJD3蛋白来
基因组。通过开发一种新的、易于使用的方法来定位膜相关结构域(LADS)-a
抑制性核室-我们还发现神经干细胞中的JMJD3在基因组LAD中富含
“边界”,这是富含转录调控元件的基因组区域。因此,我们建议
研究JMJD3在调节这方面的高阶染色质结构中的作用。建议数
神经发育和行为分析结合机械学研究有望提供一种
开始了解人类JMJD3突变如何导致疾病的科学框架。这个
JMJD3机制的研究也有望对染色质的更广泛领域具有重要意义
表观遗传学以及与核室相关的基因组组织--一个新兴的研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL A LIM其他文献
DANIEL A LIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL A LIM', 18)}}的其他基金
A new model for understanding a brain tumor epigenetic driver
理解脑肿瘤表观遗传驱动因素的新模型
- 批准号:
10432699 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别:
A new model for understanding a brain tumor epigenetic driver
理解脑肿瘤表观遗传驱动因素的新模型
- 批准号:
10588174 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别:
Functional long noncoding RNAs in neural development
神经发育中的功能性长非编码RNA
- 批准号:
10632048 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别:
Functional long noncoding RNAs in neural development
神经发育中的功能性长非编码RNA
- 批准号:
10530928 - 财政年份:2022
- 资助金额:
$ 37.95万 - 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
- 批准号:
10618153 - 财政年份:2020
- 资助金额:
$ 37.95万 - 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
- 批准号:
10212470 - 财政年份:2020
- 资助金额:
$ 37.95万 - 项目类别:
Long noncoding RNA regulation of neural stem cells
神经干细胞的长非编码RNA调控
- 批准号:
9105277 - 财政年份:2016
- 资助金额:
$ 37.95万 - 项目类别:
Role of MLL Chromatin Remodeling Factor in Neural Stem Cells
MLL 染色质重塑因子在神经干细胞中的作用
- 批准号:
7775068 - 财政年份:2009
- 资助金额:
$ 37.95万 - 项目类别:
Chromatin-based regulation of neural stem cells
基于染色质的神经干细胞调控
- 批准号:
10367124 - 财政年份:2009
- 资助金额:
$ 37.95万 - 项目类别:
Role of MLL Chromatin Remodeling Factor in Neural Stem Cells
MLL 染色质重塑因子在神经干细胞中的作用
- 批准号:
8195891 - 财政年份:2009
- 资助金额:
$ 37.95万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 37.95万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 37.95万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 37.95万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 37.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 37.95万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 37.95万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 37.95万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 37.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 37.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 37.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




