Functional long noncoding RNAs in neural development
神经发育中的功能性长非编码RNA
基本信息
- 批准号:10632048
- 负责人:
- 金额:$ 61.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseBacterial Artificial ChromosomesBiological ProcessBrainCRISPR interferenceCell ProliferationCodeCommunitiesCoupledDataDevelopmentDevelopmental Delay DisordersDiseaseDrug TargetingGenesGenetic studyGenomeGoalsHumanHuman Cell LineHuman GenomeIn VitroIndividualKnowledgeMalignant NeoplasmsMapsMental disordersMessenger RNAMolecularMolecular GeneticsNamesNatureNeurodegenerative DisordersNeuronsOrganoidsOutcomePathway interactionsPolypyrimidine Tract-Binding ProteinProductionRNA SplicingResearchRoleSchizophreniaStructureTestingTranscriptTransgenesTransplantationUntranslated RNAWorkcell typeconditional knockoutdata resourceepigenomicsgenome-widehuman diseasehuman stem cellsin vivoinduced pluripotent stem cellinsightknock-downnerve stem cellnervous system disorderneuralneurodevelopmentneurogenesisnovelsingle-cell RNA sequencingtherapeutic targettherapy developmenttranscriptometranscriptomicstransdifferentiation
项目摘要
ABSTRACT
Long noncoding RNAs (lncRNAs) have been implicated in a wide range of human neurological disorders
including cancer, developmental delay, psychiatric and neurodegenerative disease. While it is known that the
brain is enriched in specific lncRNAs, relatively few have been characterized in terms of function and molecular
mechanism. Our long-term goal is to understand the function and molecular mechanisms of lncRNAs in
neurodevelopment. Such fundamental knowledge is critical to understanding how this large aspect of the
noncoding genome regulates brain development and disease. We have taken two approaches for the study of
lncRNA function. The first approach is a “traditional” molecular-genetic study of a brain-specific, evolutionarily
conserved lncRNA that is a potent regulator of neural stem cells (NSCs). In previous studies, we identified a
novel lncRNA transcript that we named Pnky (Pou3f2 intergenic non-koding). In cultured NSCs, either Pnky
transcript knockdown or Pnky conditional knockout (Pnky-cKO) increases neuronal production by ~4-fold.
Pnky is required for proper cortical neurogenesis in vivo, and the expression of Pnky from a BAC transgene
(BAC-Pnky) fully rescues Pnky-deletion – including at the level of the transcriptome – indicating that this
lncRNA functions in trans. Pnky interacts with the splicing regulator PTBP1 (Polypyrimidine tract binding
protein 1) – a critical regulator of neurogenesis from NSCs – and Pnky appears to function in the same
molecular pathway as PTBP1. Preliminary Studies demonstrate that Pnky folds into a compact, monodisperse
state that contains intricate structures including a pseudoknot, which is a structural module known to have
important function in noncoding RNAs. Given these data, we hypothesize that Pnky contains functional
structural modules and regulates the function of PTBP1. Our second approach is to use systematic functional
screens to discover key principles of lncRNA genome function. In Preliminary Studies, we used CRISPRi to
screen in parallel 10,671 lncRNA and 18,905 mRNA genes for roles in the neural induction of NSCs from
human induced pluripotent stem cells (iPSCs). We also performed CRISPRi perturbation coupled with droplet-
based single-cell RNA-Seq (Perturb-Seq) for hundreds of screen hits. Based on results from these systematic
studies, our working hypothesis is that functional lncRNAs – in comparison to coding genes – are enriched for
roles in “focusing” differentiation to specific neural cell types. To further test this hypothesis, we will study
lncRNA function in human brain organoids and extend our screens to analyze neurogenesis. Determining the
unique functional roles of lncRNAs and coding genes at genome-scale will have important, broad impact on the
interpretation of transcriptomic and epigenomic studies of neurodevelopment. Together, by studying lncRNA
function at the level of individual transcripts and also at genome scale, we expect to gain fundamental insights
into the function of this large aspect of the noncoding genome.
摘要
长非编码RNAs(LncRNAs)与多种人类神经系统疾病有关
包括癌症、发育迟缓、精神疾病和神经退行性疾病。虽然我们知道,
大脑富含特定的lncRNAs,从功能和分子方面研究的相对较少
机制。我们的长期目标是了解lncRNAs在体内的功能和分子机制。
神经发育。这些基础知识对于理解人类社会的这一大方面是至关重要的
非编码基因组调控大脑发育和疾病。我们采取了两种方法来研究
LncRNA功能。第一种方法是一种“传统的”分子遗传学研究,对特定的大脑进行进化研究。
保守的lncRNA,是神经干细胞(NSCs)的有效调节因子。在之前的研究中,我们发现了一种
新的lncRNA转录本,我们命名为Pnky(POU3F2基因间非编码)。在培养的神经干细胞中,要么是Pnky
转录敲除或Pnky条件性敲除(Pnky-CKO)使神经元的产量增加约4倍。
Pnky是体内正常的皮质神经发生所必需的,并通过BAC转基因表达Pnky
(BAC-Pnky)完全挽救了Pnky的缺失--包括在转录组水平--表明这一点
LncRNA在反式转录中起作用。Pnky与剪接调节因子PTBP1(多嘧啶束结合)相互作用
蛋白质1)-神经干细胞神经发生的关键调节因子-和Pnky似乎在相同的
分子途径为PTBP1。初步研究表明,Pnky折叠成致密的单分散
包含复杂结构的状态,包括伪结,伪结是已知具有的结构模块
在非编码RNA中的重要作用。根据这些数据,我们假设Pnky包含函数
结构模块,并调节PTBP1的功能。我们的第二种方法是使用系统泛函
筛选以发现lncRNA基因组功能的关键原理。在初步研究中,我们使用CRISPRi
平行筛选10,671个lncRNA和18,905个mRNA基因在神经干细胞神经诱导中的作用
人诱导多能干细胞(IPSCs)。我们还进行了CRISPRi微扰与液滴的耦合。
基于单细胞RNA-Seq(扰动序列),用于数百次屏幕点击。基于这些系统化研究的结果
研究表明,我们的工作假设是,与编码基因相比,功能性lncRNAs对
在“聚焦”分化到特定神经细胞类型中的作用。为了进一步检验这一假设,我们将研究
LncRNA在人脑有机体中的功能,并扩展我们的屏幕来分析神经发生。确定
LncRNAs和编码基因在基因组水平上的独特功能作用将对
神经发育的转录组和表观组学研究解读。一起,通过研究lncRNA
在个体转录水平和基因组水平上的作用,我们期望获得基本的见解
非编码基因组的这一大方面的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL A LIM其他文献
DANIEL A LIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL A LIM', 18)}}的其他基金
A new model for understanding a brain tumor epigenetic driver
理解脑肿瘤表观遗传驱动因素的新模型
- 批准号:
10432699 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
A new model for understanding a brain tumor epigenetic driver
理解脑肿瘤表观遗传驱动因素的新模型
- 批准号:
10588174 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
Functional long noncoding RNAs in neural development
神经发育中的功能性长非编码RNA
- 批准号:
10530928 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
- 批准号:
10397619 - 财政年份:2020
- 资助金额:
$ 61.01万 - 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
- 批准号:
10618153 - 财政年份:2020
- 资助金额:
$ 61.01万 - 项目类别:
Understanding the neurodevelopmental role and mechanism of histone demethylase JMJD3
了解组蛋白去甲基化酶 JMJD3 的神经发育作用和机制
- 批准号:
10212470 - 财政年份:2020
- 资助金额:
$ 61.01万 - 项目类别:
Long noncoding RNA regulation of neural stem cells
神经干细胞的长非编码RNA调控
- 批准号:
9105277 - 财政年份:2016
- 资助金额:
$ 61.01万 - 项目类别:
Role of MLL Chromatin Remodeling Factor in Neural Stem Cells
MLL 染色质重塑因子在神经干细胞中的作用
- 批准号:
7775068 - 财政年份:2009
- 资助金额:
$ 61.01万 - 项目类别:
Chromatin-based regulation of neural stem cells
基于染色质的神经干细胞调控
- 批准号:
10367124 - 财政年份:2009
- 资助金额:
$ 61.01万 - 项目类别:
Chromatin-based regulation of neural stem cells
基于染色质的神经干细胞调控
- 批准号:
9898212 - 财政年份:2009
- 资助金额:
$ 61.01万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 61.01万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 61.01万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 61.01万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 61.01万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 61.01万 - 项目类别:














{{item.name}}会员




