X-ray fluorescence emission tomography for imaging trace gold in mouse models
X 射线荧光发射断层扫描用于对小鼠模型中的痕量金进行成像
基本信息
- 批准号:10537866
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-06 至 2026-01-05
- 项目状态:未结题
- 来源:
- 关键词:AblationAlgorithmsAnimal ModelBiologicalBrainClinicClinicalClinical ResearchClinical TrialsDataDoseDrug Delivery SystemsElementsFailureFluorescenceGeometryGoalsGoldHuman bodyIllinoisImageIn VitroInvestigationJoint repairLocationMalignant NeoplasmsMapsMeasurementMeasuresMediatingMeditationMetalsMethodsModalityModelingMonitorMonte Carlo MethodMusNoiseOrganismPenetrationPlayPositioning AttributePropertyRadiation Dose UnitRadiation therapyRadiation-Sensitizing AgentsRadioactivityRadiosensitizationResearchResolutionRoentgen RaysRoleSamplingScanningSpatial DistributionSpecific qualifier valueSuperficial LesionSystemTechniquesTherapeuticThermal Ablation TherapyTimeTissuesTranslatingUniversitiesWorkX-Ray Computed TomographyX-Ray Medical Imagingattenuationcancer carecancer therapyclinical imagingdensitydesigndetectorfluorescence imagingimage reconstructionimaging modalityimaging systemimprovedin vivomouse modelnanoGoldnovelparticlephantom modelpre-clinicalreconstructionside effecttomographytransmission processtumor
项目摘要
Project Summary
In this project, we propose to develop and optimize a novel X-ray fluorescence emission tomography system
and reconstruction algorithm to image trace gold in biological samples. Gold nanoparticles (GNPs) play an
important role in cancer therapy, serving as radiosensitizers in metal-meditated radiation therapy and as critical
components to photothermal ablation therapy. These therapies offer a promising treatment for superficial lesions
and are currently being explored in in vivo and clinical trials, but could see improved efficacy and decreased side
effects if the location and concentrations of GNPs could be mapped accurately. However current metal-mapping
methods do not provide the sensitivity or tissue penetration depth necessary to image relevant metal
concentrations. For these therapies to be translated to the clinic, there needs to be a highly sensitive metal-
mapping imaging modality that can image gold at the relevant concentrations and depths.
In recent years, X-ray fluorescence tomography has emerged as a promising modality for metal-mapping.
Specifically, X-ray fluorescence emission tomography (XFET) offers high sensitivity needed for imaging trace
gold used in in vivo and clinical studies. Furthermore, XFET offers advantages over other x-ray fluorescence
imaging modalities: it provides a direct measurement of the metal without noise-amplifying tomographic image
reconstruction, and it does not require a full sinogram, which limits the tissue penetration depth of other
modalities. In the proposed work, we will optimize the hardware acquisition parameters of an existing XFET
system to maximize gold detectability. We will also optimize an XFET image reconstruction algorithm to jointly
estimate metal maps as well as attenuation maps, providing a novel method for obtaining an attenuation map
that would otherwise be obtained by an additional, dose-delivering computed tomography (CT) scan.
The specific aims of this proposal are: 1) develop algorithms and a realistic forward model to jointly
reconstruct metal distributions and attenuation maps of objects, 2) optimize XFET hardware acquisition
parameters to maximize gold detectability at specified radiation dose levels, and 3) validate reconstruction
methods and optimization strategies in mouse phantom models, assess minimum detectable gold concentration,
and compare image quality metrics to CT. Upon completion, aim 1 will provide a method to map metals at low
concentrations, and a novel method of obtaining an attenuation map using fluorescent emission data. Aim 2 will
design a novel system geometry with parameters that maximize gold detectability. Aim 3 will demonstrate XFET
sensitivity limits and compare image quality metrics to an existing system. These results will allow us to make
predictions about this preclinical system’s capabilities in an eventual clinical scenario, paving the way for XFET
to be used as a clinical imaging system capable of mapping therapeutic GNPs for safer treatment and fewer side
effects in cancer therapies.
项目摘要
在这个项目中,我们建议开发和优化一种新型的X射线荧光发射断层扫描系统
和重建算法以在生物样品中图像痕量金。金纳米颗粒(GNP)玩
在癌症疗法中的重要作用,作为金属成熟的放射疗法的放射增敏剂,至关重要
光热消融疗法的成分。这些疗法为表面腿提供了承诺治疗
目前正在体内和临床试验中进行探索,但可以提高效率和提高的一面
如果可以准确地映射GNP的位置和浓度,效果。但是当前的金属映射
方法不提供图像相关金属所需的灵敏度或组织穿透深度
浓度。要将这些疗法转化为诊所,需要有高度敏感的金属
映射成像方式,可以在相关浓度和深度上成像金。
近年来,X射线荧光断层扫描已成为金属映射的希望形式。
具体而言,X射线荧光发射断层扫描(XFET)具有成像迹象所需的高灵敏度
黄金用于体内和临床研究。此外,XFET提供了比其他X射线荧光的优点
成像方式:它可以直接测量金属,而无需扩大噪声层析成像图像
重建,并且不需要完整的辛克图,这限制了其他的组织渗透深度
方式。在拟议的工作中,我们将优化现有XFET的硬件采集参数
系统以最大化黄金可检测性。我们还将优化XFET图像重建算法与共同
估计金属图和衰减图,提供了一种新的方法来获得衰减图
否则,这将通过额外的剂量分配计算机断层扫描(CT)扫描获得。
该提案的具体目的是:1)开发算法和一个现实的远期模型
重建金属分配和对象的衰减图,2)优化XFET硬件获取
在指定的辐射剂量水平上最大化黄金可检测性的参数,3)验证重建
小鼠幻像模型中的方法和优化策略,评估最低可检测的金浓度,
并将图像质量指标与CT进行比较。完成后,AIM 1将提供一种方法来绘制低点的金属
浓度和一种使用荧光发射数据获得衰减图的新方法。 AIM 2意志
设计一种具有最大化金可检测性的参数的新型系统几何形状。 AIM 3将演示XFET
灵敏度限制并将图像质量指标与现有系统进行比较。这些结果将使我们能够
在最终的临床情况下,有关此临床前系统功能的预测,为XFET铺平了道路
用作能够绘制治疗GNP的临床成像系统,以进行安全治疗,较少的一面
在癌症疗法中的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadley Anna DeBrosse其他文献
Hadley Anna DeBrosse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Steerable Laser Interstitial Thermotherapy (SLIT) Robot for Brain Tumor Therapy
用于脑肿瘤治疗的可操纵激光间质热疗 (SLIT) 机器人
- 批准号:
10572533 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Development of an INSPIRE System for the Treatment of Inoperable Liver Tumors
开发用于治疗无法手术的肝脏肿瘤的 INSPIRE 系统
- 批准号:
10560677 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
- 批准号:
10804031 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Acoustic Cavitation Emission (ACE) Feedback Methods for Monitoring Histotripsy-Induced Tissue Fractionation In Situ
用于监测组织解剖诱导的原位组织分割的声空化发射 (ACE) 反馈方法
- 批准号:
10415606 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Acoustic Cavitation Emission (ACE) Feedback Methods for Monitoring Histotripsy-Induced Tissue Fractionation In Situ
用于监测组织解剖诱导的原位组织分割的声空化发射 (ACE) 反馈方法
- 批准号:
10670176 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别: