Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.

球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。

基本信息

  • 批准号:
    10539146
  • 负责人:
  • 金额:
    $ 44.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-23 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Vaccines, drugs, and modified human cells that activate the immune system against tumor can improve the outcomes and prolong the lives of patients diagnosed with some type of cancers, but have failed to provide survival benefits for patients with glioblastoma (GBM). Activation of the Stimulator of Interferon Genes (STING) pathway represents one of the main innate immune sensing pathway to enable natural killer (NK) and T cell priming against tumor. Intratumoral administration of STING agonists, in particular cyclic dinucleotides (CDNs), was shown to have significant anti-tumor effects in multiple cancer models, including orthotopic GBM models, and is currently being tested in a phase 1 clinical trial in advanced cancer patients (NCT0267754339). Limited bioavailability and stability, however, are limiting factors for clinical CDN development. We have shown that the formulation of oligonucleotides into SNA structures, i.e., the presentation of oligonucleotides at high density on the surface of nanoparticles, leads to biochemical and biological properties that are radically different from those of linear (“free”) oligonucleotides. These include the cellular uptake of SNAs by a wide variety of cells, the gene regulatory activity of SNAs functionalized with siRNA or antisense DNA oligonucleotides, and the TLR-agonistic activity of SNAs conjugated with immunostimulatory oligonucleotides. Importantly, clinical trials with first generation siRNA-based SNAs (NCT03020017; GBM), and toll-like receptor 9 (TLR9)-agonsitic SNAs (NCT03086278; solid cancers) have recently been completed. Our proposed research is to develop a first-in-class immunotherapy by targeting cGAS – the sensor of cytosolic dsDNA upstream of STING – with SNAs presenting interferon-stimulating DNA (ISD) oligonucleotides at high surface density, and to evaluate the potential of SNAcGAS for use in clinical neuro-oncology. This approach is distinct from other current approaches that target the STING pathway with CDNs and small molecules. By targeting cGAS, the strategy of using SNAsISD exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. Our use of SNAs addresses the challenges of delivery of therapeutic nucleic acids through the enhanced uptake of nucleic acids formulated as SNAs, and furthermore, exploits the polyvalent presentation of oligonucleotides at high density on a nanoparticle template. Here, the binding of closely-spaced, neighboring dsDNA molecules on the surfaces of SNAs should enhance the formation of 2:2 dimers of cGAS:DNA and thus lead to potent cGAS activation. In three Specific Aims, we will optimize the SNA platform for maximum cGAS-STING pathway activation in vitro and in vivo (Aim 1), assess anti-tumor effect of our lead SNAcGAS architectures together with additional high-activity SNA constructs in vivo (Aim 2), and evaluate treatment regimens combining SNAcGAS with prioritized immunotherapies, including check point blockade and pharmacological strategies to inhibit adenosine signaling (Aim 3).
疫苗,药物和修饰的人类细胞激活免疫系统对抗肿瘤可以改善肿瘤的免疫系统。 结果并延长被诊断患有某些类型癌症的患者的生命,但未能提供 胶质母细胞瘤(GBM)患者的生存益处。干扰素基因刺激因子(STING)的激活 途径代表了使自然杀伤(NK)和T细胞活化的主要先天免疫感应途径之一。 启动抗肿瘤。肿瘤内施用STING激动剂,特别是环状二核苷酸(CDN), 显示在多种癌症模型中具有显著的抗肿瘤作用,包括原位GBM模型, 目前正在晚期癌症患者中进行I期临床试验(NCT 0267754339)。有限 然而,生物利用度和稳定性是临床CDN开发的限制因素。 我们已经表明,寡核苷酸形成SNA结构,即,的呈现 寡核苷酸以高密度在纳米颗粒的表面上,导致生物化学和生物学特性 其与线性(“游离”)寡核苷酸的那些完全不同。这些包括SNA的细胞摄取 通过多种细胞,用siRNA或反义DNA功能化的SNA的基因调节活性 图1示出了与免疫刺激性寡核苷酸缀合的SNA的TLR激动活性和与免疫刺激性寡核苷酸缀合的SNA的TLR激动活性。 重要的是,使用第一代基于siRNA的SNA(NCT 03020017; GBM)和toll样受体的临床试验 9(TLR 9)-激动性SNA(NCT 03086278;实体癌)最近已经完成。 我们提出的研究是通过靶向cGAS -细胞溶质的传感器来开发一流的免疫疗法。 STING上游的dsDNA-其中SNA以高水平呈递干扰素刺激DNA(ISD)寡核苷酸 表面密度,并评估SNAcGAS用于临床神经肿瘤学的潜力。这种方法 这与用CDN和小分子靶向STING途径的其它当前方法不同。通过 针对cGAS,使用SNAISD的策略利用cGAS的能力,通过提供 dsDNA和诱导内源性CDN的催化产生。我们使用SNA解决了以下挑战 通过增强配制为SNA的核酸的摄取来递送治疗性核酸,以及 此外,利用了寡核苷酸在纳米颗粒模板上以高密度的多价呈递。 在这里,紧密间隔的相邻dsDNA分子在SNA表面上的结合应该增强 cGAS:DNA的2:2二聚体的形成,从而导致有效的cGAS活化。三个具体目标,我们 将优化SNA平台,以实现体外和体内最大cGAS-STING途径激活(目标1),评估 我们的领先SNAcGAS架构与其他高活性SNA构建体在体内的抗肿瘤作用 (Aim 2),并评估SNAcGAS与优先免疫疗法相结合的治疗方案,包括检查 点阻断和药理学策略来抑制腺苷信号传导(Aim 3)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHAD A. MIRKIN其他文献

CHAD A. MIRKIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHAD A. MIRKIN', 18)}}的其他基金

Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
  • 批准号:
    10709540
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Innovative Research for Cancer Nanotechnology (IRCN) for Enhancing Melanoma-specific Immune Responses by the Rational Design of Spherical Nucleic Acids
通过合理设计球形核酸增强黑色素瘤特异性免疫反应的癌症纳米技术 (IRCN) 创新研究
  • 批准号:
    10402178
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Innovative Research for Cancer Nanotechnology (IRCN) for Enhancing Melanoma-specific Immune Responses by the Rational Design of Spherical Nucleic Acids
通过合理设计球形核酸增强黑色素瘤特异性免疫反应的癌症纳米技术 (IRCN) 创新研究
  • 批准号:
    10591545
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
Systemic RNA interference to reactivate p53 tumor suppression
系统性 RNA 干扰重新激活 p53 肿瘤抑制
  • 批准号:
    10091404
  • 财政年份:
    2017
  • 资助金额:
    $ 44.35万
  • 项目类别:
Nucleic Acid-Based Nanoconstructs for the Treatment of Cancer
用于治疗癌症的基于核酸的纳米结构
  • 批准号:
    8962037
  • 财政年份:
    2015
  • 资助金额:
    $ 44.35万
  • 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
  • 批准号:
    8433345
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
siRNA-gold nanoparticle mediated ganglioside depletion for diabetic wound healing
siRNA-金纳米粒子介导的神经节苷脂消耗促进糖尿病伤口愈合
  • 批准号:
    8513708
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
  • 批准号:
    8237282
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
  • 批准号:
    8632993
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
siRNA-gold nanoparticle mediated ganglioside depletion for diabetic wound healing
siRNA-金纳米粒子介导的神经节苷脂消耗促进糖尿病伤口愈合
  • 批准号:
    8435386
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了