Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
基本信息
- 批准号:10709540
- 负责人:
- 金额:$ 42.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdaptor Signaling ProteinAddressAdenosineAdvanced Malignant NeoplasmAgonistAnimalsAntigen-Presenting CellsAntisense DNAArchitectureBindingBiochemicalBiologicalBiological AvailabilityBrainCXCL10 geneCancer ModelCancer PatientCellsCharacteristicsClinicalClinical TrialsCombined Modality TherapyCredentialingCyclic GMPDNADataDevelopmentDiagnosisDinucleoside PhosphatesDoseEnzymesFormulationGene ActivationGene ExpressionGenerationsGenetic EngineeringGenetic TranscriptionGlioblastomaGliomaHistopathologyHumanIRF3 geneImmuneImmune responseImmune systemImmunocompetentImmunologic StimulationImmunotherapeutic agentImmunotherapyIn VitroInfiltrationInflammatoryInnate Immune ResponseInterferonsIntranasal AdministrationKnowledge acquisitionLeadLibrariesMacrophageMalignant NeoplasmsMalignant neoplasm of brainMediatingModalityModelingMusMyelogenousMyeloid-derived suppressor cellsNK Cell ActivationNanoconjugateNatural Killer CellsNuclearNucleic AcidsNucleosome Core ParticleOligonucleotidesPD-1 inhibitorsPathway interactionsPatientsPeriodicityPharmaceutical PreparationsPhase I Clinical TrialsPhenotypeProductionPropertyRadialRegulator GenesResearchSignal TransductionSmall Interfering RNASolidSolid NeoplasmSpherical Nucleic AcidsStimulator of Interferon GenesStructureSurfaceSurvival AnalysisT-LymphocyteTLR9 geneTestingToll-like receptorsToxic effectTranscriptional ActivationTreatment ProtocolsTumor-DerivedVaccinesadaptive immune responseantitumor effectbioluminescence imagingcancer typeclinical applicationdelivery vehicledensitydimerds-DNAearly phase clinical trialimmune checkpoint blockadeimmunoregulationimproved outcomein vivoinnate immune sensingmouse modelnanoGoldnanoarchitecturenanoparticleneuro-oncologynovelnucleasenucleic acid structurenucleic acid-based therapeuticspersonalized immunotherapypharmacologicresponsesensorsmall moleculetumortumor growthuptake
项目摘要
Vaccines, drugs, and modified human cells that activate the immune system against tumor can improve the
outcomes and prolong the lives of patients diagnosed with some type of cancers, but have failed to provide
survival benefits for patients with glioblastoma (GBM). Activation of the Stimulator of Interferon Genes (STING)
pathway represents one of the main innate immune sensing pathway to enable natural killer (NK) and T cell
priming against tumor. Intratumoral administration of STING agonists, in particular cyclic dinucleotides (CDNs),
was shown to have significant anti-tumor effects in multiple cancer models, including orthotopic GBM models,
and is currently being tested in a phase 1 clinical trial in advanced cancer patients (NCT0267754339). Limited
bioavailability and stability, however, are limiting factors for clinical CDN development.
We have shown that the formulation of oligonucleotides into SNA structures, i.e., the presentation of
oligonucleotides at high density on the surface of nanoparticles, leads to biochemical and biological properties
that are radically different from those of linear (“free”) oligonucleotides. These include the cellular uptake of SNAs
by a wide variety of cells, the gene regulatory activity of SNAs functionalized with siRNA or antisense DNA
oligonucleotides, and the TLR-agonistic activity of SNAs conjugated with immunostimulatory oligonucleotides.
Importantly, clinical trials with first generation siRNA-based SNAs (NCT03020017; GBM), and toll-like receptor
9 (TLR9)-agonsitic SNAs (NCT03086278; solid cancers) have recently been completed.
Our proposed research is to develop a first-in-class immunotherapy by targeting cGAS – the sensor of cytosolic
dsDNA upstream of STING – with SNAs presenting interferon-stimulating DNA (ISD) oligonucleotides at high
surface density, and to evaluate the potential of SNAcGAS for use in clinical neuro-oncology. This approach is
distinct from other current approaches that target the STING pathway with CDNs and small molecules. By
targeting cGAS, the strategy of using SNAsISD exploits the ability of cGAS to raise STING responses by delivering
dsDNA and inducing the catalytic production of endogenous CDNs. Our use of SNAs addresses the challenges
of delivery of therapeutic nucleic acids through the enhanced uptake of nucleic acids formulated as SNAs, and
furthermore, exploits the polyvalent presentation of oligonucleotides at high density on a nanoparticle template.
Here, the binding of closely-spaced, neighboring dsDNA molecules on the surfaces of SNAs should enhance
the formation of 2:2 dimers of cGAS:DNA and thus lead to potent cGAS activation. In three Specific Aims, we
will optimize the SNA platform for maximum cGAS-STING pathway activation in vitro and in vivo (Aim 1), assess
anti-tumor effect of our lead SNAcGAS architectures together with additional high-activity SNA constructs in vivo
(Aim 2), and evaluate treatment regimens combining SNAcGAS with prioritized immunotherapies, including check
point blockade and pharmacological strategies to inhibit adenosine signaling (Aim 3).
疫苗、药物和改良的人体细胞可以激活免疫系统对抗肿瘤
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside.
- DOI:10.3390/cancers14071615
- 发表时间:2022-03-23
- 期刊:
- 影响因子:5.2
- 作者:Mahajan AS;Stegh AH
- 通讯作者:Stegh AH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHAD A. MIRKIN其他文献
CHAD A. MIRKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHAD A. MIRKIN', 18)}}的其他基金
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10539146 - 财政年份:2022
- 资助金额:
$ 42.56万 - 项目类别:
Innovative Research for Cancer Nanotechnology (IRCN) for Enhancing Melanoma-specific Immune Responses by the Rational Design of Spherical Nucleic Acids
通过合理设计球形核酸增强黑色素瘤特异性免疫反应的癌症纳米技术 (IRCN) 创新研究
- 批准号:
10402178 - 财政年份:2022
- 资助金额:
$ 42.56万 - 项目类别:
Innovative Research for Cancer Nanotechnology (IRCN) for Enhancing Melanoma-specific Immune Responses by the Rational Design of Spherical Nucleic Acids
通过合理设计球形核酸增强黑色素瘤特异性免疫反应的癌症纳米技术 (IRCN) 创新研究
- 批准号:
10591545 - 财政年份:2022
- 资助金额:
$ 42.56万 - 项目类别:
Systemic RNA interference to reactivate p53 tumor suppression
系统性 RNA 干扰重新激活 p53 肿瘤抑制
- 批准号:
10091404 - 财政年份:2017
- 资助金额:
$ 42.56万 - 项目类别:
Nucleic Acid-Based Nanoconstructs for the Treatment of Cancer
用于治疗癌症的基于核酸的纳米结构
- 批准号:
8962037 - 财政年份:2015
- 资助金额:
$ 42.56万 - 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
- 批准号:
8433345 - 财政年份:2012
- 资助金额:
$ 42.56万 - 项目类别:
siRNA-gold nanoparticle mediated ganglioside depletion for diabetic wound healing
siRNA-金纳米粒子介导的神经节苷脂消耗促进糖尿病伤口愈合
- 批准号:
8513708 - 财政年份:2012
- 资助金额:
$ 42.56万 - 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
- 批准号:
8237282 - 财政年份:2012
- 资助金额:
$ 42.56万 - 项目类别:
Topical Delivery of siRNA Nanconjugates: Suppressing Epidermal Hyperplasia
siRNA 纳米缀合物的局部递送:抑制表皮增生
- 批准号:
8632993 - 财政年份:2012
- 资助金额:
$ 42.56万 - 项目类别:
siRNA-gold nanoparticle mediated ganglioside depletion for diabetic wound healing
siRNA-金纳米粒子介导的神经节苷脂消耗促进糖尿病伤口愈合
- 批准号:
8435386 - 财政年份:2012
- 资助金额:
$ 42.56万 - 项目类别:














{{item.name}}会员




