Advanced therapeutic hypothermia efficacy network modeling in neonatal HIE
新生儿 HIE 的先进低温治疗功效网络模型
基本信息
- 批准号:10538972
- 负责人:
- 金额:$ 71.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-02 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2 year oldAddressAdultAgeAlabamaAutomobile DrivingBiologicalBiological MarkersBrain InjuriesCaringCessation of lifeChildClinicalClinical DataCommunitiesComputer SimulationCoupledDataData ScientistData SetData SourcesEffectivenessEnrollmentFundingFutureHealth systemIndividualInterventionIntervention TrialInvestigationKnowledgeLifeMachine LearningMagnetic Resonance ImagingManuscriptsMeasuresMethodsModelingMolecularMolecular ProfilingNational Institute of Child Health and Human DevelopmentNeonatalNeonatal Intensive Care UnitsNucleic AcidsOutcomePathway AnalysisPatient SelectionPatientsPeer ReviewProbabilityProteinsPublishingResearch PersonnelRetinoscopyRight to TreatmentsRisk FactorsSeveritiesStratificationTestingTherapeuticTimeUniversitiesValidationVirginiabasebrain magnetic resonance imagingclinical heterogeneityclinical phenotypecohortcostdata-driven modeldisabilityexosomeexperiencefeedingfollow-upimprovedimproved outcomein silicoindividual patientmachine learning methodmodifiable riskmolecular markernatural hypothermianeonatal encephalopathyneonatal hypoxic-ischemic brain injuryneonatenetwork modelsneural networkneurodevelopmentnovelnovel markerpatient safetyphenotypic biomarkerphenotypic datapredicting responsepredictive modelingpreventprospectiveprotein metaboliteresponsesafety outcomessocioeconomics
项目摘要
Fifty percent of neonatal encephalopathy cases result from hypoxic-ischemic encephalopathy (HIE).
Therapeutic hypothermia (TH), the only approved therapy remains state of the art care for HIE, despite only a
30% reduction in death and significant disability. Our limited ability to accurately track TH efficacy limits
identification of babies, who may benefit from adjunctive therapies. Under R01HD086058, our team enrolled
neonates with HIE treated with TH and tested whether circulating brain injury biomarkers used in adults were
associated with HIE severity, MRI and 2-year outcomes. We identified the novel biomarkers significantly
associated with the proposed outcomes and published 22 peer-reviewed original, high-impact manuscripts.
Our team has extensive experience in biomarkers in children (1R01HL150070), brain injury biomarkers in HIE
(U01 NS114144) and real-time machine learning integrating within health systems (R61HD105591). Our
central hypothesis is that a holistic and integrative approach, including deep clinical and community-based
data, and molecular biomarkers of multiple biologic pathways, analyzed using a fully connected parsimonious
neural network will best describe relationships with longitudinal outcomes, and be able to predict response to
TH in individual patients. Our outstanding group of investigators from Johns Hopkins University, University of
Virginia and University of Alabama Birmingham, propose the following Aims: Aim 1a. Perform clinical data-
driven modeling to ascertain TH effectiveness. We will use deep phenotyping data sets of all maternal,
neonatal, community-based, and follow-up data collected retrospectively (2016-2021) and prospectively thru
year 1, from neonates treated with TH at the 3 centers (n = 500) to model TH efficacy using multivariable
methods against longitudinal outcomes. Aim 1b. Identify novel molecular signatures for HIE insult severity
which predict response to TH. Using our discovery (N=178) TH treated HIE cohort, we will determine if
circulating brain injury proteins, metabolites and exosome proteins and nucleic acids are associated with TH
efficacy. Aim 1c. Determine relationships emerging from integration between clinical, community-based, and
molecular markers using a fully connected parsimonious neural network approach. 1C.1 Use computational
simulations to identify the levers, modifiable risk factors and interventions associated with the probability of
negative outcomes, in the neural network, and 1C.2 Determine in silico whether optimization of the neural
network using those levers at the individual patient level, results in a reduction in the predicted probability of
negative outcomes. Aim 2. External validation of neural network and estimation of potential clinical gain
achievable by optimization of the neural network, in prospective patients (Years 2-5). Completion of our aims
will identify the clinical, socioeconomic, and molecular mechanisms driving clinical heterogeneity in HIE and
response to TH. We will then be poised to rapidly deploy a dynamic, precision-based model to optimized
patient selection for future HIE adjunctive therapies.
50%的新生儿脑病病例是由缺氧缺血性脑病(HIE)引起的。
治疗性低温(TH),唯一批准的治疗仍然是最先进的治疗新生儿缺氧缺血性脑病,尽管只有一个
死亡和严重残疾减少30%。我们准确跟踪TH疗效限值的能力有限
识别婴儿,谁可能受益于替代疗法。根据R 01 HD 086058,我们的团队注册了
用TH治疗新生儿HIE,并测试成人中使用的循环脑损伤生物标志物是否
与HIE严重程度、MRI和2年结局相关。我们发现新的生物标志物显着
与拟议成果相关的出版物,并出版了22份经同行评审的高影响力原创手稿。
我们的团队在儿童生物标志物(1 R 01 HL 150070)、HIE脑损伤生物标志物
(U01 NS 114144)和实时机器学习集成在卫生系统中(R61 HD 105591)。我们
中心假设是,一个整体和综合的方法,包括深入的临床和社区为基础的
数据和多个生物途径的分子生物标志物,使用完全连接的简约
神经网络将最好地描述与纵向结果的关系,并能够预测对
个体患者的TH。我们杰出的研究小组来自约翰霍普金斯大学,
弗吉尼亚大学和亚拉巴马伯明翰大学提出了以下目标:目标1a。执行临床数据-
驱动建模以确定TH有效性。我们将使用所有产妇的深层表型数据集,
回顾性(2016-2021年)和前瞻性收集的新生儿、社区和随访数据,
第1年,来自3个中心接受TH治疗的新生儿(n = 500),使用多变量
方法对纵向结果。目标1b。确定新生儿缺氧缺血性脑病损伤严重程度的新分子特征
预测对TH的反应。使用我们的发现(N=178)TH治疗的HIE队列,我们将确定
循环脑损伤蛋白、代谢物和外来体蛋白和核酸与TH相关
功效目标1c。确定临床、基于社区的和
使用完全连接的简约神经网络方法的分子标记。1C.1使用计算
模拟,以确定杠杆,可修改的风险因素和干预措施与概率
负面结果,在神经网络中,和1C.2通过计算机确定是否优化神经网络
网络在个体患者水平上使用这些杠杆,导致预测的概率降低,
消极的结果。目标二。神经网络的外部验证和潜在临床增益的估计
在前瞻性患者中(2-5年),通过优化神经网络可实现。完成我们的目标
将确定临床,社会经济和分子机制驱动临床异质性在HIE和
回答TH。然后,我们将准备快速部署一个动态的、基于精度的模型,
未来HIE治疗的患者选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALLEN D EVERETT其他文献
COMPARISON BETWEEN PULMONARY ARTERIAL HYPERTENSION (PAH) RISK ASSESSMENT METHODS, INCLUDING PULMONARY HYPERTENSION OUTCOME RISKS ASSESSMENT (PHORA)
- DOI:
10.1016/j.chest.2022.08.2013 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
CHARLES FAUVEL;ZILU LIU;SHILI LIN;PRISCILLA CORREA-JAQUE;AMY WEBB;REBECCA R VANDERPOOL;MANREET KANWAR;JIDAPA KRAISANGKA;PUNEET MATHUR;ADAM PERER;ALLEN D EVERETT;RAYMOND L BENZA - 通讯作者:
RAYMOND L BENZA
ALLEN D EVERETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALLEN D EVERETT', 18)}}的其他基金
Role of Cyclohexanone Toxicity in Mediating Congenital Cardiac Surgery Outcomes
环己酮毒性在调节先天性心脏手术结果中的作用
- 批准号:
10627951 - 财政年份:2022
- 资助金额:
$ 71.58万 - 项目类别:
Role of Cyclohexanone Toxicity in Mediating Congenital Cardiac Surgery Outcomes
环己酮毒性在调节先天性心脏手术结果中的作用
- 批准号:
10444513 - 财政年份:2022
- 资助金额:
$ 71.58万 - 项目类别:
Advanced therapeutic hypothermia efficacy network modeling in neonatal HIE
新生儿 HIE 的先进低温治疗功效网络模型
- 批准号:
10696194 - 财政年份:2022
- 资助金额:
$ 71.58万 - 项目类别:
Clinical and mechanistic role of HDGF in pulmonary hypertension
HDGF 在肺动脉高压中的临床和机制作用
- 批准号:
9772631 - 财政年份:2017
- 资助金额:
$ 71.58万 - 项目类别:
Adult Biomarkers in Neonatal Brain Injury and Development
新生儿脑损伤和发育中的成人生物标志物
- 批准号:
9761549 - 财政年份:2016
- 资助金额:
$ 71.58万 - 项目类别:
Adult Biomarkers in Neonatal Brain Injury and Development
新生儿脑损伤和发育中的成人生物标志物
- 批准号:
9549109 - 财政年份:2016
- 资助金额:
$ 71.58万 - 项目类别:
Adult Biomarkers in Neonatal Brain Injury and Development
新生儿脑损伤和发育中的成人生物标志物
- 批准号:
10006591 - 财政年份:2016
- 资助金额:
$ 71.58万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 71.58万 - 项目类别:
Research Grant














{{item.name}}会员




