Advanced therapeutic hypothermia efficacy network modeling in neonatal HIE
新生儿 HIE 的先进低温治疗功效网络模型
基本信息
- 批准号:10696194
- 负责人:
- 金额:$ 66.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-02 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2 year oldAdultAgeAlabamaAutomobile DrivingBiologicalBiological MarkersBrain InjuriesCaringCessation of lifeChildClinicalClinical DataCollaborationsCommunitiesComputer SimulationCoupledDataData ScientistData SetData SourcesDimensionsEffectivenessEnrollmentFundingFutureHealth systemIndividualInterventionIntervention TrialInvestigationKnowledgeLifeMachine LearningMagnetic Resonance ImagingManuscriptsMeasuresMethodsModelingMolecularMolecular ProfilingNational Institute of Child Health and Human DevelopmentNeonatalNeonatal Intensive Care UnitsNucleic AcidsOutcomePathway interactionsPatient SelectionPatient-Focused OutcomesPatientsPeer ReviewProbabilityProteinsPublishingResearch PersonnelRetinoscopyRight to TreatmentsRisk FactorsSeveritiesStratificationTestingTherapeuticTimeUniversitiesValidationVirginiabrain magnetic resonance imagingclinical biomarkersclinical heterogeneitycohortcostdata-driven modeldisabilityexosomeexperiencefeedingfollow-upimprovedimproved outcomein silicoindividual patientmachine learning methodmodifiable riskmolecular markernatural hypothermianeonatal encephalopathyneonatal hypoxic-ischemic brain injuryneonatenetwork modelsneural networkneurodevelopmentnovelnovel markerparticipant enrollmentpatient safetyphenotypic biomarkerphenotypic datapredicting responsepredictive modelingpreventprospectiveresponsesocioeconomics
项目摘要
Fifty percent of neonatal encephalopathy cases result from hypoxic-ischemic encephalopathy (HIE).
Therapeutic hypothermia (TH), the only approved therapy remains state of the art care for HIE, despite only a
30% reduction in death and significant disability. Our limited ability to accurately track TH efficacy limits
identification of babies, who may benefit from adjunctive therapies. Under R01HD086058, our team enrolled
neonates with HIE treated with TH and tested whether circulating brain injury biomarkers used in adults were
associated with HIE severity, MRI and 2-year outcomes. We identified the novel biomarkers significantly
associated with the proposed outcomes and published 22 peer-reviewed original, high-impact manuscripts.
Our team has extensive experience in biomarkers in children (1R01HL150070), brain injury biomarkers in HIE
(U01 NS114144) and real-time machine learning integrating within health systems (R61HD105591). Our
central hypothesis is that a holistic and integrative approach, including deep clinical and community-based
data, and molecular biomarkers of multiple biologic pathways, analyzed using a fully connected parsimonious
neural network will best describe relationships with longitudinal outcomes, and be able to predict response to
TH in individual patients. Our outstanding group of investigators from Johns Hopkins University, University of
Virginia and University of Alabama Birmingham, propose the following Aims: Aim 1a. Perform clinical data-
driven modeling to ascertain TH effectiveness. We will use deep phenotyping data sets of all maternal,
neonatal, community-based, and follow-up data collected retrospectively (2016-2021) and prospectively thru
year 1, from neonates treated with TH at the 3 centers (n = 500) to model TH efficacy using multivariable
methods against longitudinal outcomes. Aim 1b. Identify novel molecular signatures for HIE insult severity
which predict response to TH. Using our discovery (N=178) TH treated HIE cohort, we will determine if
circulating brain injury proteins, metabolites and exosome proteins and nucleic acids are associated with TH
efficacy. Aim 1c. Determine relationships emerging from integration between clinical, community-based, and
molecular markers using a fully connected parsimonious neural network approach. 1C.1 Use computational
simulations to identify the levers, modifiable risk factors and interventions associated with the probability of
negative outcomes, in the neural network, and 1C.2 Determine in silico whether optimization of the neural
network using those levers at the individual patient level, results in a reduction in the predicted probability of
negative outcomes. Aim 2. External validation of neural network and estimation of potential clinical gain
achievable by optimization of the neural network, in prospective patients (Years 2-5). Completion of our aims
will identify the clinical, socioeconomic, and molecular mechanisms driving clinical heterogeneity in HIE and
response to TH. We will then be poised to rapidly deploy a dynamic, precision-based model to optimized
patient selection for future HIE adjunctive therapies.
50%的新生儿脑病病例是由缺氧缺血性脑病(HIE)引起的。
治疗性低温(TH),唯一批准的治疗仍然是最先进的治疗新生儿缺氧缺血性脑病,尽管只有一个
死亡和严重残疾减少30%。我们准确跟踪TH疗效限值的能力有限
识别婴儿,谁可能受益于替代疗法。根据R 01 HD 086058,我们的团队注册了
用TH治疗新生儿HIE,并测试成人中使用的循环脑损伤生物标志物是否
与HIE严重程度、MRI和2年结局相关。我们发现新的生物标志物显着
与拟议成果相关的出版物,并出版了22份经同行评审的高影响力原创手稿。
我们的团队在儿童生物标志物(1 R 01 HL 150070)、HIE脑损伤生物标志物
(U01 NS 114144)和实时机器学习集成在卫生系统中(R61 HD 105591)。我们
中心假设是,一个整体和综合的方法,包括深入的临床和社区为基础的
数据和多个生物途径的分子生物标志物,使用完全连接的简约
神经网络将最好地描述与纵向结果的关系,并能够预测对
个体患者的TH。我们杰出的研究小组来自约翰霍普金斯大学,
弗吉尼亚大学和亚拉巴马伯明翰大学提出了以下目标:目标1a。执行临床数据-
驱动建模以确定TH有效性。我们将使用所有产妇的深层表型数据集,
回顾性(2016-2021年)和前瞻性收集的新生儿、社区和随访数据,
第1年,来自3个中心接受TH治疗的新生儿(n = 500),使用多变量
方法对纵向结果。目标1b。确定新生儿缺氧缺血性脑病损伤严重程度的新分子特征
预测对TH的反应。使用我们的发现(N=178)TH治疗的HIE队列,我们将确定
循环脑损伤蛋白、代谢物和外来体蛋白和核酸与TH相关
功效目标1c。确定临床、基于社区的和
使用完全连接的简约神经网络方法的分子标记。1C.1使用计算
模拟,以确定杠杆,可修改的风险因素和干预措施与概率
负面结果,在神经网络中,和1C.2通过计算机确定是否优化神经网络
网络在个体患者水平上使用这些杠杆,导致预测的概率降低,
消极的结果。目标二。神经网络的外部验证和潜在临床增益的估计
在前瞻性患者中(2-5年),通过优化神经网络可实现。完成我们的目标
将确定临床,社会经济和分子机制驱动临床异质性在HIE和
回答TH。然后,我们将准备快速部署一个动态的、基于精度的模型,
未来HIE治疗的患者选择。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALLEN D EVERETT其他文献
COMPARISON BETWEEN PULMONARY ARTERIAL HYPERTENSION (PAH) RISK ASSESSMENT METHODS, INCLUDING PULMONARY HYPERTENSION OUTCOME RISKS ASSESSMENT (PHORA)
- DOI:
10.1016/j.chest.2022.08.2013 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
CHARLES FAUVEL;ZILU LIU;SHILI LIN;PRISCILLA CORREA-JAQUE;AMY WEBB;REBECCA R VANDERPOOL;MANREET KANWAR;JIDAPA KRAISANGKA;PUNEET MATHUR;ADAM PERER;ALLEN D EVERETT;RAYMOND L BENZA - 通讯作者:
RAYMOND L BENZA
ALLEN D EVERETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALLEN D EVERETT', 18)}}的其他基金
Role of Cyclohexanone Toxicity in Mediating Congenital Cardiac Surgery Outcomes
环己酮毒性在调节先天性心脏手术结果中的作用
- 批准号:
10627951 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Role of Cyclohexanone Toxicity in Mediating Congenital Cardiac Surgery Outcomes
环己酮毒性在调节先天性心脏手术结果中的作用
- 批准号:
10444513 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Advanced therapeutic hypothermia efficacy network modeling in neonatal HIE
新生儿 HIE 的先进低温治疗功效网络模型
- 批准号:
10538972 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Clinical and mechanistic role of HDGF in pulmonary hypertension
HDGF 在肺动脉高压中的临床和机制作用
- 批准号:
9772631 - 财政年份:2017
- 资助金额:
$ 66.67万 - 项目类别:
Adult Biomarkers in Neonatal Brain Injury and Development
新生儿脑损伤和发育中的成人生物标志物
- 批准号:
9761549 - 财政年份:2016
- 资助金额:
$ 66.67万 - 项目类别:
Adult Biomarkers in Neonatal Brain Injury and Development
新生儿脑损伤和发育中的成人生物标志物
- 批准号:
9549109 - 财政年份:2016
- 资助金额:
$ 66.67万 - 项目类别:
Adult Biomarkers in Neonatal Brain Injury and Development
新生儿脑损伤和发育中的成人生物标志物
- 批准号:
10006591 - 财政年份:2016
- 资助金额:
$ 66.67万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 66.67万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 66.67万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 66.67万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 66.67万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 66.67万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 66.67万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 66.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 66.67万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 66.67万 - 项目类别:
Research Grants














{{item.name}}会员




