Utilizing changes in human brain connectivity to establish a dose-response relationship involved in the therapeutic actions of prefrontal brain stimulation on depression symptoms
利用人脑连接的变化建立剂量反应关系,参与前额叶脑刺激对抑郁症状的治疗作用
基本信息
- 批准号:10542288
- 负责人:
- 金额:$ 11.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBrainClinicalClinical assessmentsComputer softwareDataData ScienceDevelopmentDisciplineDisease remissionDoctor of PhilosophyDoseFailureFundingGoalsHealth systemHumanImageIntelligenceInterventionK-Series Research Career ProgramsMachine LearningMajor Depressive DisorderMedicineMental DepressionModelingOutcomeParentsParticipantPatientsProbabilityResearchResearch PersonnelResearch Project GrantsResourcesRestSeveritiesSupervisionTechniquesTechnologyTestingTherapeuticTrainingUnited States National Institutes of HealthUniversitiesWorkcareercohortdepressive symptomsfunctional MRI scanhealth economicsimprovedineffective therapiesmachine learning algorithmmachine learning classifierneuroimagingneuroregulationnovelparent grantpersonalized medicinepredict clinical outcomepredicting responseresponsetreatment planningtreatment responsetreatment-resistant depression
项目摘要
PROJECT SUMMARY/ABSTRACT
This is a Diversity Supplement Proposal for Azeezat K. Azeez, Ph.D., entitled “Machine Learning for Predictive
Clinical Outcomes to Neuromodulation Therapy for Treatment-Resistant Depression”. It is a Supplement to the
Parent R01, held by Nolan Williams, MD titled “5R01MH122754-02: Utilizing changes in human brain
connectivity to establish a dose-response relationship involved in the therapeutic actions of prefrontal brain
stimulation on depression symptoms”. The goal of the Parent Grant is to (1) test changes in resting-state
functional connectivity (rsFC) using functional magnetic resonance imaging (fMRI) scans daily and (2) examine
how rsFC changes relate to clinical improvement due to a novel and effective neuromodulation intervention,
Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT). This will improve our understanding of the
underlying mechanism of Major Depressive Disorder (MDD), particularly Treatment-Resistant Depression.
Notwithstanding the high efficacy of SAINT, relative to existing therapeutics a substantial number of
participants do fail to respond. Failure to respond, particularly in TRD, leads to detrimental health and
economic effects on the participant as well as on the health system. Our lack of ability to predict who will
respond to treatment constitutes a major translational gap in the SAINT technology. Therefore, the goal of the
current diversity supplement is to employ machine learning algorithms on neuroimaging data to predict who is
most likely to respond to treatment. Data science, neuroimaging, and neurostimulation are converging at an
exciting junction, the intersection of these disciplines is where the Diversity Supplement lies. A combination of
Machine Learning classifier models (supervised and unsupervised) and selection of appropriate imaging
features, trained on training data, then tested, and validated will yield a model with high accuracy for predicting
clinical outcomes. A combination of these parts will allow us the highest probability of developing a successful
algorithm that can be packaged into software to accompany neuromodulation intervention. The current
Supplement aims to 1) classify Treatment Response between cohorts; Active, Sham, and Neurotypical Control,
and 2) accurately predict remission and response outcomes in Treatment Severity classes. The Diversity
Supplement would allow Dr.Azeez to gain proficiency in 1) Machine Learning Techniques, 2) Clinical
Assessments, and 3) Professional Development while under the 2-year funding period. Training and research
for the project will be conducted at Stanford University which offers excellent intellectual and physical
resources to complete the proposed work. The research proposed in the Supplement will help to launch Dr.
Azeez’s career in developing Computational Aids for Clinicians in Psychiatric Medicine. This is a major goal of
the supplement application and one that will prepare the candidate, Dr. Azeez, for the short-term goal of
preparing a competitive NIH K- Award, and the long-term goal for a career as an independent academic
researcher. This proposed work has the potential to improve the lives of patients suffering with depression.
项目摘要/摘要
这是Azeezat K. Azeez博士的一项多样性补充建议,名为“用于预测的机器学习
神经调节疗法的临床结局用于治疗抑郁症”。这是对
由诺兰·威廉姆斯(Nolan Williams)持有的父母R01,标题为“ 5R01MH122754-02:利用人脑的变化
连通性以建立参与前额叶大脑治疗作用的剂量反应关系
对抑郁症状的刺激”。父母赠款的目的是(1)静止状态的测试变化
使用功能磁共振成像(fMRI)扫描的功能连通性(RSFC),(2)检查
RSFC的变化与由于新颖有效的神经调节干预措施而导致的临床改善有关,
斯坦福大学加速了智能神经调节疗法(SAINT)。这将提高我们对
重度抑郁症(MDD)的潜在机制,尤其是抗治疗抑郁症。
尽管圣人的效率很高,但相对于现有治疗
参与者确实无法做出回应。没有做出响应,特别是在TRD中,会导致有害的健康和
对参与者以及卫生系统的经济影响。我们缺乏预测谁将
对治疗的反应构成了圣技术的主要翻译差距。因此,
当前的多样性补充是在神经影像数据上使用机器学习算法来预测谁是
最有可能对治疗做出反应。数据科学,神经影像学和神经刺激正在融合
令人兴奋的交界处,这些学科的交汇处是多样性补充的所在。组合
机器学习分类器模型(监督和无监督)和选择适当的成像
经过训练数据培训的功能,然后进行了测试和验证,将产生一个高准确性的模型
临床结果。这些零件的结合将使我们有最高的可能性发展成功的可能性
可以包装到软件中以适应神经调节干预的算法。电流
补充旨在1)对队列之间的治疗反应进行分类;活跃,假和神经型控制,
2)准确预测治疗严重性类别中的缓解和反应结果。多样性
补充剂将使Azeez博士能够熟练1)机器学习技术,2)临床
评估和3)在2年资金期内的专业发展。培训和研究
该项目将在斯坦福大学进行,该大学提供出色的知识和物理
资源以完成拟议的工作。补品中提出的研究将有助于启动Dr.
Azeez在开发精神病医学临床医生的计算辅助工具方面的职业。这是一个主要目标
补充申请以及将为候选人Azeez博士准备的申请,以实现短期目标
准备有竞争力的NIH K奖,也是作为独立学术职业的长期目标
研究员。这项拟议的工作有可能改善患有抑郁症患者的生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nolan R. Williams其他文献
Sustained Efficacy of Stanford Neuromodulation Therapy (SNT) in Open-Label Repeated Treatment.
斯坦福神经调节疗法 (SNT) 在开放标签重复治疗中的持续疗效。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:17.7
- 作者:
Andrew D. Geoly;Ian H Kratter;Pouya Toosi;Eleanor J. Cole;Gregory L Sahlem;Nolan R. Williams - 通讯作者:
Nolan R. Williams
Pilot study of stanford neuromodulation therapy (SNT) for bipolar depression
斯坦福神经调节疗法(SNT)治疗双相抑郁症的初步研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.7
- 作者:
K. Raj;Andrew D. Geoly;Clive Veerapal;Mia Gholmieh;Pouya Toosi;F. Espil;Jean;Ian H Kratter;Nolan R. Williams - 通讯作者:
Nolan R. Williams
24 - Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered during Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham-Controlled Crossover Study
- DOI:
10.1016/j.brs.2016.11.042 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Gregory L. Sahlem;Bashar W. Badran;Jonathan J. Halford;Nolan R. Williams;Jeffrey E. Korte;Kimberly Leslie;Martha Strachan;Jesse L. Breedlove;Jennifer Runion;David L. Bachman;Thomas W. Uhde;Jeffery J. Borckardt;Mark S. George - 通讯作者:
Mark S. George
Nolan R. Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nolan R. Williams', 18)}}的其他基金
The Effects of Stanford Accelerated Intelligent Neuromodulation Therapy on Explicit and Implicit Suicidal Cognition
斯坦福大学加速智能神经调节疗法对外显和内隐自杀认知的影响
- 批准号:
10263271 - 财政年份:2020
- 资助金额:
$ 11.7万 - 项目类别:
Utilizing changes in human brain connectivity to establish a dose-response relationship involved in the therapeutic actions of prefrontal brain stimulation on depression symptoms
利用人脑连接的变化建立剂量反应关系,参与前额叶脑刺激对抑郁症状的治疗作用
- 批准号:
10560493 - 财政年份:2020
- 资助金额:
$ 11.7万 - 项目类别:
Utilizing changes in human brain connectivity to establish a dose-response relationship involved in the therapeutic actions of prefrontal brain stimulation on depression symptoms
利用人脑连接的变化建立剂量反应关系,参与前额叶脑刺激对抑郁症状的治疗作用
- 批准号:
10772313 - 财政年份:2020
- 资助金额:
$ 11.7万 - 项目类别:
相似国自然基金
基于5T磁共振血管周围间隙量化模型预测AD临床进展及其与脑体积和脑血流关系的研究
- 批准号:82302157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自然刺激fMRI的临床前期AD动态脑指纹研究
- 批准号:62301343
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑灰-白质图卷积模型的SCD影像标记物提取及临床应用研究
- 批准号:62376150
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
联合脑电和眼动信号的多模态情绪识别脑机接口及其临床应用研究
- 批准号:62306120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑深部电刺激通过调控苍白球内环路治疗亨廷顿舞蹈病临床症状的电生理机制研究
- 批准号:82371267
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:
10765218 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别: