DeepCOPD: Development and Implementation of Deep Learning to Predict and Prevent COPD Health Care Encounters
DeepCOPD:开发和实施深度学习来预测和预防慢性阻塞性肺病医疗保健遭遇
基本信息
- 批准号:10542393
- 负责人:
- 金额:$ 74.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-20 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAdoptionAdverse eventAmbulatory CareAutomated AnnotationCalibrationCaregiversCaringChronicChronic Obstructive Pulmonary DiseaseClinicClinicalCodeCommunitiesConsumptionControlled VocabularyDataDetectionDevelopmentDiagnosisDimensionsDiseaseDisease ProgressionEarly identificationElectronic Health RecordEventFinancial HardshipFutureHealthHealth PersonnelHealth PolicyHealth systemHealthcareHealthcare SystemsHomeHospitalizationHumanIndividualIngestionMachine LearningMaintenanceManualsMapsMedicalMethodsModelingNational Heart, Lung, and Blood InstituteNatural Language ProcessingNatureOutcomeOutpatientsOxygenOxygen Therapy CarePatient CarePatient Care ManagementPatientsPerformancePersonsPhysiciansProceduresProcessProviderRecording of previous eventsResearchResourcesRiskRisk FactorsStructureSymptomsSystemTechniquesTextTimeUpdateValidationVisitVisualizationbiomedical informaticsclinical applicationclinical careclinical implementationcostdata streamsdata visualizationdeep learningdeep learning algorithmdeep learning modeldiscrete dataend stage diseasefunctional statushealth care deliveryhealth care service utilizationhigh riskhospital readmissionimprovedlearning strategymachine learning methodpredictive modelingpredictive toolspreventprogramsprospectivereadmission risksocialstructured datasupport toolstoolunstructured datausabilityuser centered designweb site
项目摘要
In the US, ~24 million persons live with COPD, half undiagnosed, and ~150,000 die of COPD
annually. COPD causes over 700,000 US hospitalizations and costs nearly $50 billion per year. The
human and financial burdens of COPD could likely be reduced if disease progression and other
adverse events could be anticipated, enabling caregivers to focus finite resources on at-risk patients.
We propose to create a decision-support tool that integrates biomedical informatics with advanced
machine learning (ML) and deep learning (DL) algorithms to predict acute and chronic healthcare
encounters (hospital admissions, readmissions, and ED encounters) and major disease progression
events (home oxygen therapy) for outpatients with COPD. Such a tool would confer immediate clinical
benefits and accelerate research on COPD disease progression and treatment. Predictive modeling is
widely used to identify high-risk patients for care management in COPD and other disorders, with a
strong emphasis on readmission risk. However, extant techniques are not sufficiently accurate and do
not identify the specific nature of likely future medical events, estimate time-to-event, and specifically
forecast medical encounters and disease progression events for individuals with COPD. Recent
research in disease progression modeling support the application of DL and other ML methods to
electronic health records (EHRs) to predict aspects of health history. EHRs contain both readily
accessible structured data (e.g., lab results in well-defined fields) and unstructured texts such as
physician’s notes. Unstructured texts contain a great deal of clinical information, but this information is
laborious to access; impeding its routine use in research and the clinic. This has motivated attempts to
use natural language processing (NLP) methods to automate annotation. We will apply NLP to identify
symptoms, treatments, procedures, diagnoses, social risk factors, and functional status from clinical
notes, expanding the data available from EHRs far beyond the usual coded variables. Also, and
distinctively, we will carry out a stepped-wedge clinical implementation of the proposed predictive tool
and evaluate its performance, a first for ML and DL prediction of COPD health events. Therefore, we
propose four Specific Aims: AIM 1: Transform EHR data streams to provision patient-level feature sets
for ML and DL consumption. AIM 2: Develop a set of ML and DL models to predict the time-to-event
for home oxygen therapy initiation and healthcare encounters among patients with COPD. AIM 3: To
develop and implement a prospective performance surveillance and calibration maintenance system to
maintain the final Aim 2 model for each outcome. AIM 4: Evaluate adoption and usability of the
DeepCOPD toolkit in near-realtime clinical use in two healthcare systems. The application is
responsive to the NHLBI IDEA2Health (NOT-HL-19-712).
在美国,约2400万人患有COPD,其中一半未确诊,约15万人死于COPD
每年。COPD导致超过700,000例美国住院治疗,每年花费近500亿美元。的
如果疾病进展和其他因素,COPD的人力和经济负担可能会减少,
不良事件是可以预期的,使护理人员能够将有限的资源集中用于有风险的病人。
我们建议创建一个决策支持工具,将生物医学信息学与先进的
机器学习(ML)和深度学习(DL)算法,用于预测急性和慢性医疗保健
遭遇(入院、再入院和艾德遭遇)和重大疾病进展
事件(家庭氧疗)。这样的工具将立即提供临床
并加速对COPD疾病进展和治疗的研究。预测建模
广泛用于识别COPD和其他疾病的护理管理高危患者,
强调再入院风险。然而,现有的技术不够准确,
未识别未来可能发生的医疗事件的具体性质,未估计事件发生时间,
预测COPD患者的医疗遭遇和疾病进展事件。最近
疾病进展建模的研究支持DL和其他ML方法的应用,
电子健康记录(EHR)预测健康史的各个方面。EHR很容易包含这两种
可访问的结构化数据(例如,定义明确的字段中的实验室结果)和非结构化文本,例如
医生的笔记非结构化文本包含大量的临床信息,但这些信息是
难以接近;妨碍其在研究和临床中的常规使用。这促使人们试图
使用自然语言处理(NLP)方法来自动化注释。我们将应用NLP来识别
症状,治疗,程序,诊断,社会风险因素和临床功能状态
注释,扩展了EHR中可用的数据,远远超出了通常的编码变量。拉巴和靠近约旦河之
与此不同的是,我们将对所提出的预测工具进行逐步楔形临床实施
并评估其性能,首次用于COPD健康事件的ML和DL预测。所以我们
提出四个具体目标:目标1:转换EHR数据流,以提供患者级功能集
用于ML和DL消费。目标2:开发一组ML和DL模型来预测事件发生时间
用于COPD患者的家庭氧疗启动和医疗保健。目标3:
制定和实施预期性能监督和校准维护系统,
为每个结果保留最终的目标2模型。目标4:评估
DeepCOPD工具包在两个医疗保健系统中近实时临床使用。应用程序
响应NHLBI IDEA 2 Health(NOT-HL-19-712)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremiah R Brown其他文献
Measuring Neurite Dynamics in Co-culture Using IncuCyte ZOOM ® Live-content Imaging Platform and NeuroLight Red TM Fluorescent Label
使用 IncuCyte ZOOM ® 实时内容成像平台和 NeuroLight Red TM 荧光标签测量共培养中的神经节动态
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jeremiah R Brown;T. Garay;S. Alcantara;Lauren T McGillicuddy;Nevine Holtz;J. Rauch;Dyke;McEwen;V. Groppi;T. Dale;O. McManus - 通讯作者:
O. McManus
Optimizing the pharmacoinvasive approach to acute ST-segment elevation myocardial infarction: use of half-dose thrombolytic therapy in combination with glycoprotein IIb/IIIa receptor inhibitors compared with full-dose thrombolytic therapy in the setting of routine urgent post-thrombolytic percutaneous coronary intervention
- DOI:
10.1016/j.carrev.2010.03.053 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:
- 作者:
Pantila Vanichakarn;Rayson C. Yang;Sheila M. Conley;Tamara A. Anderson;James T. Devries;Bruce J. Friedman;Bruce D. Hettleman;John E. Jayne;Aaron V. Kaplan;John F. Robb;Jeremiah R Brown;Nathaniel W. Niles - 通讯作者:
Nathaniel W. Niles
Jeremiah R Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremiah R Brown', 18)}}的其他基金
The BASIC trial: Improving implementation of evidence-based approaches and surveillance to prevent bacterial transmission and infection
BASIC 试验:改进循证方法和监测的实施,以防止细菌传播和感染
- 批准号:
10618922 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
The BASIC trial: Improving implementation of evidence-based approaches and surveillance to prevent bacterial transmission and infection
BASIC 试验:改进循证方法和监测的实施,以防止细菌传播和感染
- 批准号:
10316780 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
DeepCOPD: Development and Implementation of Deep Learning to Predict and Prevent COPD Health Care Encounters
DeepCOPD:开发和实施深度学习来预测和预防慢性阻塞性肺病医疗保健遭遇
- 批准号:
10382949 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
The BASIC trial: Improving implementation of evidence-based approaches and surveillance to prevent bacterial transmission and infection
BASIC 试验:改进循证方法和监测的实施,以防止细菌传播和感染
- 批准号:
10434139 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
IMPROVE AKI: A Cluster-Randomized Trial of Team-Based Coaching Interventions to IMPROVE Acute Kidney Injury
改善 AKI:基于团队的教练干预改善急性肾损伤的整群随机试验
- 批准号:
10402326 - 财政年份:2018
- 资助金额:
$ 74.16万 - 项目类别:
Information Extraction from EMRs to Predict Readmission following Acute Myocardial Infarction
从 EMR 中提取信息以预测急性心肌梗死后的再入院
- 批准号:
9282479 - 财政年份:2016
- 资助金额:
$ 74.16万 - 项目类别:
Novel Biomarkers to Predict Readmission in Pediatric and Adult Heart Surgery
预测儿童和成人心脏手术再入院的新型生物标志物
- 批准号:
9098842 - 财政年份:2014
- 资助金额:
$ 74.16万 - 项目类别:
Novel Biomarkers to Predict Readmission in Pediatric and Adult Heart Surgery
预测儿童和成人心脏手术再入院的新型生物标志物
- 批准号:
8759821 - 财政年份:2014
- 资助金额:
$ 74.16万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 74.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant














{{item.name}}会员




