Noninvasive measurement of oxygenation using quantitative susceptibility mapping

使用定量磁化率图无创测量氧合

基本信息

  • 批准号:
    10542422
  • 负责人:
  • 金额:
    $ 81.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The goal of this research is to develop cardiac quantitative susceptibility mapping (QSM) for non-invasive meas- urement of blood oxygen saturation, towards the long-term objective of improving early diagnosis, therapeutic decision-making, and clinical outcomes for patients with pulmonary hypertension (PH). PH is a progressive and life shortening disorder affecting ~10% of adults over age 65. Given that PH can be irreversible in its later stages, early diagnosis and physiologic monitoring are critically important. Impaired oxygenation of the lungs and heart chambers (cardiac oxygenation) is a key manifestation of PH that impacts symptoms and clinical outcomes. Increased pulmonary arterial pressure in PH impairs pulmonary oxygen exchange, decreasing delivery of oxy- genated blood to the left heart. Systemic cardiac output is often compromised in PH, resulting a larger differential blood oxygen saturation between the left and right heart. Invasive catheterization (cath) is currently used to measure cardiac oxygenation but entails procedural risks, ionizing radiation exposure, and is impractical for early diagnosis and serial monitoring - a non-invasive method to accurately measure blood oxygenation would be of substantial utility. MRI is well suited for PH assessment as it enables integrated evaluation of pulmonary anat- omy, pressure, as well as cardiac function and remodeling - blood oxygenation is a key gap in MRI evaluation of PH. This gap stems from limitations in current pulse sequence technology rather than fundamental MRI physics. It is well known that deoxygenation changes the magnetic susceptibility of blood. These changes have tradition- ally been probed using a magnitude property of the MR signal: the transverse relaxation time (T2). However, this requires patient-specific calibration that is difficult in clinical practice. In contrast, QSM relies on the phase of the MR signal to directly measure susceptibility and thus cardiac oxygenation. We have obtained highly encouraging preliminary data for QSM measurement of cardiac blood oxygenation, with close agreement between QSM and oxygenation measured invasively. We have identified key challenges for developing cardiac QSM, including motion suppression and prolonged scan times. The current research proposes to develop an accelerated cardiac QSM method, and to test QSM in relation to oxygenation on invasive cath, as well as effort tolerance and clinical prognosis. Study Aims are as follows: (1) Develop accelerated cardiac QSM using free-breathing acquisition and optimized reconstruction. (2) Test accelerated and current cardiac QSM among PH patients in comparison to T2-based cardiac oxygenation and the reference standard of invasive cardiac catheterization. (3) Determine whether cardiac QSM stratifies clinical severity and predicts PH disease progression. The expected outcome of this research is a non-invasive method for measuring cardiac oxygenation – a critically important marker in PH that currently relies on invasive testing. Given the increasing prevalence and therapeutic options for this serious condition, non-invasive oxygenation assessment by cardiac QSM holds broad significance towards the goal of early diagnosis, therapy optimization, and improved clinical outcomes for millions of patients with PH.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pascal Spincemaille其他文献

Pascal Spincemaille的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pascal Spincemaille', 18)}}的其他基金

Noninvasive measurement of oxygenation using quantitative susceptibility mapping
使用定量磁化率图无创测量氧合
  • 批准号:
    10322146
  • 财政年份:
    2021
  • 资助金额:
    $ 81.64万
  • 项目类别:
Noninvasive measurement of oxygenation using quantitative susceptibility mapping (supplement)
使用定量磁化率图无创测量氧合(补充)
  • 批准号:
    10864405
  • 财政年份:
    2021
  • 资助金额:
    $ 81.64万
  • 项目类别:
Compact Representations of Dynamic Liver MRI
动态肝脏 MRI 的紧凑表示
  • 批准号:
    9265796
  • 财政年份:
    2015
  • 资助金额:
    $ 81.64万
  • 项目类别:
Novel Dynamic Liver Imaging Method with Flexible Temporal and Spatial Resolution
具有灵活时间和空间分辨率的新型动态肝脏成像方法
  • 批准号:
    8114383
  • 财政年份:
    2011
  • 资助金额:
    $ 81.64万
  • 项目类别:
Vastly Accelerated Dynamic Spiral MR Liver Imaging
大幅加速动态螺旋 MR 肝脏成像
  • 批准号:
    8323863
  • 财政年份:
    2011
  • 资助金额:
    $ 81.64万
  • 项目类别:
Novel Dynamic Liver Imaging Method with Flexible Temporal and Spatial Resolution
具有灵活时间和空间分辨率的新型动态肝脏成像方法
  • 批准号:
    8247701
  • 财政年份:
    2011
  • 资助金额:
    $ 81.64万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 81.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了