Noninvasive measurement of oxygenation using quantitative susceptibility mapping (supplement)
使用定量磁化率图无创测量氧合(补充)
基本信息
- 批准号:10864405
- 负责人:
- 金额:$ 70.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAutomationBloodCalciumCardiacCatheterizationCessation of lifeClinicalClipCongestive Heart FailureDataDecision MakingDevelopmentDiagnosisDiseaseFailureFibrosisGeometryGoalsHeartHeart failureIndividualIonizing radiationLinkMagnetic Resonance ImagingMagnetismManualsMapsMeasurementMeasuresMethodsMitral ValveMitral Valve InsufficiencyMitral Valve ProlapseModalityMorbidity - disease rateMyocardiumOperative Surgical ProceduresOutcomeOutcomes ResearchPatient-Focused OutcomesPatientsPhasePhysiologicalPrediction of Response to TherapyPredispositionPrognosisPulmonary HypertensionRadiation exposureRecurrenceReference StandardsResearchResolutionRiskScanningSeveritiesShapesSignal TransductionStructureTechniquesTestingTherapeuticTreatment outcomeUnited StatesValidationcalcificationcardiac magnetic resonance imagingcohortimplantable deviceimprovedimproved outcomeinsightmachine learning algorithmmagnetic fieldmitral valve replacementmortalitynon-complianceparent projectpredicting responseprognosticrepair strategyrepairedresponserisk stratificationsuccesstooltreatment optimizationtreatment responseultrasound
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of this research is to develop and validate cardiac quantitative susceptibility mapping (QSM) for the
assessment of mitral annular calcification severity, towards the long-term objective of improving prediction of
therapeutic response, therapeutic decision-making and clinical outcomes for patients with mitral valve prolapse
(MVP). MVP occurs in over 7 million individuals in the United States and over 170 million worldwide. It is a
leading cause of degenerative mitral regurgitation (DMR) which represents the most frequent form of mitral
regurgitation (MR) requiring surgery. Percutaneous (mitral valve clip placement) or surgical (mitral valve repair)
treatment can reduce MR, thus avoiding harmful untreated regurgitation or mitral valve replacement (MVR).
However, MR recurs in 10-30% of patients, which impacts prognosis and increases risk for congestive heart
failure and death. It is therefore critical to have early predictors of therapeutic success to optimize treatments
and improve outcomes for patients with MVP. Mitral annular calcium (MAC) is one such key predictor of response
to surgical and percutaneous repair in patients with MVP. MAC is known to decrease surgical treatment success
and to increase morbidity and mortality. MAC is currently diagnosed using ultrasound (echo), which lacks
quantitation, or CT, which exposes the patient to ionizing radiation and is not capable of measuring other
predictors such as fibrosis or directly assessing MR itself. Cardiac MRI (CMRI) can measures these predictors
but is currently incapable of quantifying MAC – thus limiting the utility of this powerful modality for assessment
of physiologic determinants of MR and its response to therapy. Nevertheless, calcification has a strong effect on
the MR signal due to its strong diamagnetic susceptibility, which significantly modifies the magnetic at and round
the MAC. While severe MAC can be qualitatively detected using the resulting low magnitude signal, it is less
sensitive at mild or moderate MAC levels and is not quantitative. QSM – an MRI technique pioneered by our
group – is able to directly measure susceptibility and thus calcium content. We have obtained encouraging
preliminary data showing the feasibility of using cardiac QSM to detect MAC and have shown preliminary
validation of this method against cardiac CT reference. In this proposal, we propose to develop cardiac QSM
acquisition and processing methods and perform its validation among a cohort of MVP patients through the
following Specific Aims. (1) We will compare conventional to accelerated QSM for quantification of MAC among
patients with MVP undergoing percutaneous or surgical repair. (2) We will develop and validate a fully automated
machine learning algorithm to quantify MAC. (3) We will test whether QSM independently predicts therapeutic
response to mitral valve repair. The expected outcome of this research is a non-invasive MRI based method to
measure mitral annulus calcification severity, which is a key predictor of success of percutaneous or surgical
treatment for mitral valve prolapse. Cardiac QSM holds broad significance towards the goal of therapeutic
optimization for valvular disease.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pascal Spincemaille其他文献
Pascal Spincemaille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pascal Spincemaille', 18)}}的其他基金
Noninvasive measurement of oxygenation using quantitative susceptibility mapping
使用定量磁化率图无创测量氧合
- 批准号:
10322146 - 财政年份:2021
- 资助金额:
$ 70.03万 - 项目类别:
Noninvasive measurement of oxygenation using quantitative susceptibility mapping
使用定量磁化率图无创测量氧合
- 批准号:
10542422 - 财政年份:2021
- 资助金额:
$ 70.03万 - 项目类别:
Novel Dynamic Liver Imaging Method with Flexible Temporal and Spatial Resolution
具有灵活时间和空间分辨率的新型动态肝脏成像方法
- 批准号:
8114383 - 财政年份:2011
- 资助金额:
$ 70.03万 - 项目类别:
Vastly Accelerated Dynamic Spiral MR Liver Imaging
大幅加速动态螺旋 MR 肝脏成像
- 批准号:
8323863 - 财政年份:2011
- 资助金额:
$ 70.03万 - 项目类别:
Novel Dynamic Liver Imaging Method with Flexible Temporal and Spatial Resolution
具有灵活时间和空间分辨率的新型动态肝脏成像方法
- 批准号:
8247701 - 财政年份:2011
- 资助金额:
$ 70.03万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Research Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Continuing Grant