Decoding mechanotransduction mechanisms of cell-surface receptors

解码细胞表面受体的机械转导机制

基本信息

  • 批准号:
    10542757
  • 负责人:
  • 金额:
    $ 41.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-20 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Recently, it has become apparent that mechanical cues in the cellular microenvironment drive cell migration, stem cell differentiation into distinct cell types and even how a surveilling T-cells is triggered by its correct antigen, solidifying tension-sensing as a key regulatory switch in cellular function. Not surprisingly, alteration of mechanical forces is an emerging factor in diseases like cancer, which makes intuitive sense given that diagnosis often involves detecting a lump that feels harder and stiffer than the surrounding tissue. Indeed, distinct and quantifiable “mechanical phenotypes” of normal and diseased cells/tissues have been measured. Underlying these cellular “mechanical phenotypes” characteristic of normal and diseased cellular microenvironments are mechanosensing proteins that convert sensed physical perturbations into biochemical signals in a process known as mechanotransduction. These signaling pathways are putative targets of emerging “mechano- therapeutic” strategies aimed to correct aberrant mechanical phenotypes. The overall vision of the Gordon lab is to innovate technology to identify the molecular players underlying disease-relevant mechanical-phenotypes, and dissect their tension-sensing mechanisms to cure disease. The greatest challenge to determining the molecular basis of force sensing is that the technology to measure picoNewton (pN) forces sensed by an individual protein in the context of the cell emerged only ten years ago, and is still under constant development. This has crippled identification of new mechanosensing proteins involved in a given cellular or disease process and also left a huge gap in testable hypotheses regarding how force alters the conformation of receptors to trigger a biological response. Our lab has established three major areas to tackle this problem that blend technology development and hypothesis driven questions. Program I. In combination with cellular imaging, we develop and use molecular tension sensors (MTS) to measure forces sensed by hypothesized mechanosensing proteins in the cellular context. We plan to combine MTS and CRISPR screens to identify mechanosensors involved in glioblastoma and T-cell migration. Program II. Second, we aim to test the hypothesis that proteolysis of receptors is a mechanism to convey mechanical stimuli. We will use structural biophysics to study newly identified Notch-like proteolytic switches and use CRISPR-tagging and mass spectrometry to study global receptor proteolysis in response to applied force. Program III. Finally, our lab has expanded into a third area- function and application of HUH-endonucleases as “HUH-tags” to covalently link proteins and DNA. We plan to engineer sequence specificity and RNA-binding of HUH-tags. We are poised to use HUH-tags to improve DNA- based MTS and to link mechanosensing-domains to DNA-nanostructures to coax proteins into mechanically activated conformations. The interleaving of new protein-DNA conjugation technology with hypothesis driven research drives creative and innovative approaches to important problems in biomedical science and medicine. 1
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WENDY RYAN GORDON其他文献

WENDY RYAN GORDON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WENDY RYAN GORDON', 18)}}的其他基金

Engineering Protein Modulators of Notch Activation for T-cell immunotherapy
用于 T 细胞免疫治疗的 Notch 激活的工程蛋白质调节剂
  • 批准号:
    10612995
  • 财政年份:
    2023
  • 资助金额:
    $ 41.42万
  • 项目类别:
Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
  • 批准号:
    10330300
  • 财政年份:
    2016
  • 资助金额:
    $ 41.42万
  • 项目类别:
Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
  • 批准号:
    9897757
  • 财政年份:
    2016
  • 资助金额:
    $ 41.42万
  • 项目类别:
Decoding mechanotransduction mechanisms of cell-surface receptors
解码细胞表面受体的机械转导机制
  • 批准号:
    9319295
  • 财政年份:
    2016
  • 资助金额:
    $ 41.42万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 41.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了