Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
基本信息
- 批准号:10543478
- 负责人:
- 金额:$ 31.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAcetylationAcylationAcyltransferaseAdultAffectAgingBiochemistryBioenergeticsCardiacCardiac MyocytesCardiomyopathiesCell DeathCell physiologyCellsCellular biologyCommunicationCommunication impairmentDataDeacetylaseDefectDegenerative DisorderDevelopmentDiseaseEngineeringExcisionExhibitsFailureFibrosisFunctional disorderGoalsHeartHeart DiseasesHumanImpairmentIndividualLinkMass Spectrum AnalysisMediatingMetabolicMetabolismMitochondriaMitochondrial DiseasesMitochondrial ProteinsModelingModificationMusPathogenesisPathologyPathway interactionsPatternPhosphate CarriersPhysiologicalPhysiologyPlayPositioning AttributePost-Translational Protein ProcessingProcessProductionProteinsProteomicsRegulationResearchSignal PathwaySignal TransductionSirtuinsStressSystemTestingTissue DifferentiationTissuesWorkarmbiological adaptation to stresscopingcyclophilin Ddesigngene therapyin vivoin vivo Modelinnovationinsightmetabolomicsmitochondrial dysfunctionmitochondrial metabolismmitochondrial permeability transition poremouse modelnew therapeutic targetnoveloverexpressionpublic health relevanceresponsestressor
项目摘要
As critical regulators of cellular metabolism, mitochondria activate various pathways in response to stressors
(e.g., aging) and dysfunction (e.g., unfolded proteins). However, little is known about the in vivo pathways
mitochondria use to communicate impaired energy production. Mitochondrial energy dysfunction is a hallmark
of a range of degenerative diseases affecting tissues with high energy demands, thus understanding how
mitochondria respond to energy dysfunction and direct the cellular response to energetic crisis in vivo is critical
for the design of targeted strategies to ameliorate these diseases. Here, we will leverage a unique model of in
vivo mitochondrial energy impairment that we engineered by inducible deletion of the cardiac mitochondrial
phosphate carrier (SLC25A3) in adult mouse cardiomyocytes. This model offers a novel system to model
mitochondrial energy impairment in a terminally differentiated tissue with high energy demands. Intriguingly,
despite the cardiac disease exhibited by these mice, SLC25A3 deficiency does not engage canonical
mitochondrial energy dysfunction pathways like AMPK and ROS signaling, nor is cell death or fibrosis exhibited
by deficient hearts. Instead, loss of SLC25A3 in adult hearts causes a striking increase in mitochondria-specific
protein acylations, particularly acetylation and malonylation. Acylations are dynamic post-translational
modifications derived from metabolic intermediates and subject to removal by sirtuin deacylases. Importantly,
acylations harbor the potential to link metabolism to protein functional regulation, while altered acylation is
associated with disease pathogenesis. Our preliminary data suggest that, in particular, two aspects of the
acylome—the acetylome and the malonylome—are remodeled in response to mitochondrial energy
dysfunction. While the acylome is well known to regulate mitochondrial metabolism, our work suggests that the
converse is also possible: that mitochondrial energy dysfunction directs acylome remodeling. We hypothesize
that acylome modifications represent a mitochondria-intrinsic mechanism to coordinate the cellular response to
energy stress. Using the SLC25A3 deletion mice together with cell biology, biochemistry, proteomics, and
innovative in vivo gene therapy approaches, we will 1) identify the mechanisms underlying SLC25A3 deletion-
mediated acylome remodeling, 2) define how acylations regulate the mitochondrial permeability transition pore
cell death pathway, and 3) determine the physiological impact of aberrant acylations on the mitochondrial
energy-impaired heart. The proposed studies will provide novel insight on the link between mitochondrial
bioenergetics and acylome remodeling and position acylations as an arm of the mitochondrial stress response
that is activated upon mitochondrial energy dysfunction. Ultimately, identification of pathways regulating
mitochondrial dysfunction will facilitate the development of new therapies targeting mitochondrial energy
dysfunction in disease.
作为细胞代谢的关键调节器,线粒体激活各种途径以响应应激
(e.g.,老化)和功能障碍(例如,未折叠蛋白质)。然而,对体内途径知之甚少
线粒体用来交流受损的能量生产。线粒体能量障碍是一个标志
一系列影响高能量需求组织的退行性疾病,从而了解如何
线粒体对能量功能障碍的反应和指导细胞对体内能量危机的反应是至关重要的
设计有针对性的策略来改善这些疾病。在这里,我们将利用一个独特的模型,
体内线粒体能量损伤,我们通过诱导缺失心脏线粒体
磷酸盐载体(SLC 25 A3)在成年小鼠心肌细胞中的表达。该模型提供了一种新的系统建模
在具有高能量需求的终末分化组织中的线粒体能量损伤。有趣的是,
尽管这些小鼠表现出心脏病,但SLC 25 A3缺陷并不参与典型的
线粒体能量功能障碍途径如AMPK和ROS信号传导,也不表现出细胞死亡或纤维化
心有残缺。相反,在成人心脏中,SLC 25 A3的缺失导致了心脏特异性凋亡的显著增加。
蛋白质酰化,特别是乙酰化和丙二酰化。酰化是动态的翻译后
源自代谢中间产物并通过沉默调节蛋白脱酰酶去除的修饰。重要的是,
酰化具有将代谢与蛋白质功能调节联系起来的潜力,而改变的酰化是
与疾病的发病机制有关。我们的初步数据表明,特别是两个方面的
乙酰基组和丙二酰组在线粒体能量的作用下被重塑
功能障碍虽然酰基组是众所周知的调节线粒体代谢,我们的工作表明,
匡威也是可能的:线粒体能量功能障碍指导酰基组重塑。我们假设
酰基组修饰代表了一种协调细胞反应的内在机制,
能源压力使用SLC 25 A3缺失小鼠,结合细胞生物学、生物化学、蛋白质组学,
创新的体内基因治疗方法,我们将1)确定潜在的SLC 25 A3缺失的机制-
介导的酰基组重塑,2)定义酰化如何调节线粒体渗透性转换孔
细胞死亡途径,和3)确定异常酰化对线粒体的生理影响
能量受损的心脏这项研究将为线粒体与细胞凋亡之间的联系提供新的见解。
生物能量学和酰基组重塑和位置酰化作为线粒体应激反应的一个分支
在线粒体能量障碍时被激活。最后,确定调节
线粒体功能障碍将促进针对线粒体能量的新疗法的开发
疾病中的功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Q. Kwong其他文献
Mitochondrial dysfunction and oxidative stress in heart disease
心脏病中的线粒体功能障碍与氧化应激
- DOI:
10.1038/s12276-019-0355-7 - 发表时间:
2019-12-19 - 期刊:
- 影响因子:12.900
- 作者:
Jessica N. Peoples;Anita Saraf;Nasab Ghazal;Tyler T. Pham;Jennifer Q. Kwong - 通讯作者:
Jennifer Q. Kwong
Jennifer Q. Kwong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Q. Kwong', 18)}}的其他基金
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10342557 - 财政年份:2022
- 资助金额:
$ 31.3万 - 项目类别:
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:














{{item.name}}会员




