Molecular Mechanisms of Electrical Synapse Formation in Vivo
体内电突触形成的分子机制
基本信息
- 批准号:10543796
- 负责人:
- 金额:$ 40.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Adherens JunctionAdhesionsAdultAnimalsAversive StimulusBehaviorBehavioralBindingBiochemicalBiochemistryBiologicalBiological ModelsBrainCellsCellular biologyCentral Nervous SystemChemical SynapseChemicalsCommunicationComplexConnexinsCytoskeletonDataDedicationsDendritesDevelopmentElectrical SynapseEpilepsyEpitheliumFamilyFoundationsFutureGap JunctionsGenesGeneticGenetic ScreeningGoalsGolgi ApparatusHomologous GeneHumanIn VitroIndividualInterneuronsInvestigationIonsLinkMauthner&aposs neuronModelingMolecularMolecular MachinesMotorMotor outputNeurodevelopmental DisorderNeuronsOregonOutputPathway interactionsPatternPerceptionPlayPostdoctoral FellowProcessPropertyProteinsPublishingRoleSchizophreniaSensorySiteStereotypingStructureSynapsesSystemTestingTight JunctionsUniversitiesVesicleVisualizationWorkZebrafishautism spectrum disorderdevelopmental diseasegap junction channelgenetic regulatory proteinin vivoin vivo Modelinsightmembermembrane-associated guanylate kinaseneural circuitneuronal circuitrynovelpostsynapticpresynapticprotein transportresponsereverse geneticsscaffoldsmall moleculesynaptic functionsynaptogenesistargeted treatmenttherapeutic developmenttraffickingvertebrate embryos
项目摘要
All of brain function, from sensory perception to behavior, is derived from the pattern and properties of the
synaptic connections among billions (in humans) of individual neurons. The long-term goal of this project is to
understand molecular pathways that regulate synapse formation in vivo using a vertebrate model with a focus
on the underappreciated electrical synapse. Electrical synapses are sites of direct communication between
neurons that allow the passage of ions and small molecules. They contribute extensively to neural circuit
formation and function, both during development as well in adulthood where they contribute to sensory
perception, interneuron processing, and motor output. However, the molecular mechanisms controlling the
formation of electrical synapse are poorly understood. This proposal utilizes the zebrafish Mauthner circuit to
investigate the genetics, cell biology, and biochemistry of electrical synapse formation and function. Mauthner
neurons are individually identifiable and their pre- and postsynaptic partners, synapses, and function are
exquisitely visualized in a living, vertebrate embryo. Classic forward and novel reverse genetic screens have
identified the Connexins that form the inter-neuronal channels of the Mauthner electrical synapses, found that
there are dedicated pre- and postsynaptic Connexins, and identified Neurobeachin, a post-Golgi trafficking
protein, and Tight Junction Protein 1b (Tjp1b), a membrane-associated guanylate kinase (MAGUK) family
scaffold, as being required for electrical synapse formation. These findings suggest that electrical synapses are
comprised of a molecular complexity that is not generally appreciated; they further suggests that intricate
biochemical mechanisms are required to control the formation, function, and plasticity of these critical sites of
neuronal communication. Aim1 of this proposal examines the cell biological mechanisms of electrical synapse
formation, examining the hypothesis that electrical synapses require the postsynaptic localization and function
of Tjp1b to stabilize Connexins at the synapse. Aim2 examines the biochemical mechanisms of
synaptogenesis, examining the hypothesis that a direct interaction between Tjp1b and the Connexins is
required for localization to the synapse. Aim3 looks to expand the molecular repertoire of proteins required for
electrical synapse formation, and provides a new view of electrical synapses as complex multi-molecular
machines. Given that electrical synapses are essential to early developmental wiring of the brain, they may be
intricately linked to developmental disorders of wiring. Indeed, both Neurobeachin and the MAGUKs are
associated with autism and other neurodevelopmental disorders. The proposed studies will provide novel
insight into the mechanisms of electrical synapse formation and provide a foundation for the identification of
targets for therapy of complex neurodevelopmental disorders.
所有的大脑功能,从感觉知觉到行为,都来源于大脑的模式和属性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam C Miller其他文献
Adam C Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam C Miller', 18)}}的其他基金
Transgenic tools for revealing the contributions of electrical synapses to neural circuits
揭示电突触对神经回路贡献的转基因工具
- 批准号:
10012410 - 财政年份:2020
- 资助金额:
$ 40.14万 - 项目类别:
Molecular Mechanisms of Electrical Synapse Formation in Vivo
体内电突触形成的分子机制
- 批准号:
10079028 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Molecular Mechanisms of Electrical Synapse Formation in Vivo
体内电突触形成的分子机制
- 批准号:
10368043 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
9500819 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
9408653 - 财政年份:2016
- 资助金额:
$ 40.14万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
9177889 - 财政年份:2016
- 资助金额:
$ 40.14万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
8618053 - 财政年份:2013
- 资助金额:
$ 40.14万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
8743313 - 财政年份:2013
- 资助金额:
$ 40.14万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 40.14万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 40.14万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 40.14万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 40.14万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 40.14万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 40.14万 - 项目类别:














{{item.name}}会员




