Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
基本信息
- 批准号:8743313
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnimalsAutistic DisorderAwardAxonBackBehaviorBehavioralBiochemicalBiologicalBiological ModelsBiological Neural NetworksBrainCell TransplantsCellsCellular biologyChemical SynapseChemicalsChromosome MappingCloningCommunicationComplementConfocal MicroscopyDefectDendritesDevelopmentDiseaseElectrical SynapseElectrophysiology (science)EmbryoEnsureEpilepsyEquipmentFishesFoundationsFred Hutchinson Cancer Research CenterFutureGap JunctionsGenesGeneticGenetic ScreeningGenomicsGoalsGolgi ApparatusHumanImageIndividualInvestigationIonsKnowledgeLeadLearningLesionLifeLinkLocationMapsMediatingMentorsMethodsModelingMolecularMotorMotor outputMultivesicular BodyMutationNeuraxisNeuronsPathway interactionsPatternPennsylvaniaPerceptionPhasePhysiologicalPhysiologyProcessPropertyProteinsRecruitment ActivityResearchRoleSensorySignal TransductionSiteSpeedStereotypingStimulusSynapsesSyndromeTechnical ExpertiseTechniquesTestingTherapeuticTrainingUniversitiesVisitWashingtonWorkZebrafishbasecellular imagingexperienceforward geneticsgap junction channelgene cloningin vivoinformation processinginsightmedical schoolsmutantnervous system disorderneural circuitneuronal circuitryneurotransmitter releasepositional cloningpostsynapticprocessing speedprotein transportpublic health relevanceresearch studyresponseskillssmall moleculesynaptic functionsynaptogenesistheoriestooltraffickingtranscriptome sequencing
项目摘要
DESCRIPTION (provided by candidate): All of brain function, from sensory perception to behavior, is derived from the pattern and properties of the synaptic connections among billions (in humans) of individual neurons. The long-term goal of this project is to understand molecular pathways that regulate synapse formation in vivo using a vertebrate model with a focus on the underappreciated electrical synapse. Electrical synapses are sites of direct communication between neurons that allow the passage of ions and small molecules. They are formed in a regulated manner between only a subset of potentially available partners and are composed of neuronal gap junction channels. Electrical synapses contribute extensively to neural circuits during development as well as to adult circuits from sensory perception to processing to motor output. However, the molecular mechanisms underlying the formation of the gap junction channels that form the electrical synapse are unknown. This proposal utilizes the Zebrafish Mauthner (M) circuit to investigate the genetics of electrical synapse formation. The M neurons are individually identifiable and their pre and postsynaptic partners, synapses, and function are exquisitely visualized in a living, vertebrate embryo. A forward genetic screen for mutations causing defects in the stereotyped M electrical synapses was performed that identified two distinct classes of mutations: 1) the Disconnect (Dis) class, which disrupts synapse formation, and 2) the Amped (Amp) class, which causes ectopic synapses to form along the M axon. Using an RNA-seq-based approach all three Dis mutations were positionally mapped, and one of the Dis mutants was found to be due to the loss of the autism- associated gene neurobeachin (nbea). This proposal will investigate Nbea's role in electrical synapse formation (Aim1), will clone the other Dis and Amp mutations identified in the pilot screen (Aim2), will examine the effect of the mutations on synapse function and behavior (Aim3), and will expand the pilot screen to elucidate further genes and pathways required for synaptogenesis (Aim4). During the two year mentored phase I will develop the model system by characterizing how the genes regulate electrical synapse formation in several ways: What are the temporal and spatial properties of synaptic cargo localization during in vivo synaptogenesis? How do the mutants affect the function of the synapse? How do the mutants affect neural network function and behavior? In Cecilia Moens' lab at the Fred Hutchinson Cancer Research Center (main mentor), I will learn to perform live cell imaging of fluorescently-tagged, synaptic proteins using spinning
disc confocal microscopy. This technique will be applied to all mutants and will be the first live investigation of electrical synapse formation in vivo. To investigate M synapse and circuit function I will visit Joe Fetcho's lab at Cornell University to learn to perform electrophysiology n the M neural circuit and I will visit Michael Granato's lab at the University of Pennsylvania Perelman School of Medicine to learn behavioral analysis of the M-mediated escape behavior. The skills acquired will be brought back to Seattle where I will perform experiments on the mutants. For electrophysiology I will work with Rachel Wong at the University of Washington (main co-mentor) where I will receive ongoing training in electrophysiology and will have access to equipment for experiments. For behavior I will work in the Moens lab where we have the high- speed camera necessary to capture the M-mediated escape response. The electrophysiological and behavioral analysis will be applied to all mutants and will be essential for linking the cell-biological defects to functional deficits in the circuit. The training in the Fetcho and Granato las will be short and intensive, but both mentors will be available to me on an ongoing basis for technical expertise and guidance. The mentoring in the Moens and Wong labs will be ongoing, with extensive interaction and support. With this training I will have the necessary experience and a powerful set of tools and techniques to establish my own independent research group. During the independent phase of the project I will utilize the acquired skills to illuminate the molecular mechanisms that build gap junctions at the electrical synapse. The proposed studies will provide a detailed molecular, cellular, and functional view of how neural circuits form in a vertebrate in vivo. Disorders that cause neural circuit miswiring or synaptic imbalance are the basis of many neurological diseases including autism and epilepsy. In the case of autism, several molecular pathways (including Nbea examined here in Aim1) have been associated with the disorder. However a unifying theory explaining how these genes fit together to explain the syndrome remains elusive. Investigating the genetic pathways required for neural circuit wiring and synapse formation will lend insight into disease states that will ultimately allow for the identification of targets for therapy.
描述(由候选人提供): 所有的大脑功能,从感官知觉到行为,都来自于数十亿(人类)单个神经元之间突触连接的模式和特性。这个项目的长期目标是利用脊椎动物模型来了解体内调节突触形成的分子通路,重点是未被重视的电突触。电突触是神经元之间直接交流的场所,允许离子和小分子通过。它们仅在潜在可用伴侣的子集之间以受调节的方式形成,并且由神经元间隙连接通道组成。电突触在发育过程中对神经回路以及从感觉知觉到处理到运动输出的成人回路做出了广泛的贡献。然而,形成电突触的差距连接通道的分子机制尚不清楚。该提议利用斑马鱼Mauthner(M)电路来研究电突触形成的遗传学。M神经元是单独可识别的,它们的突触前和突触后伙伴、突触和功能在活的脊椎动物胚胎中被精细地可视化。对导致定型M电突触缺陷的突变进行正向遗传筛选,鉴定出两种不同的突变类别:1)断开(Disc)类别,其破坏突触形成,和2)安培(Amped)类别,其导致异位突触沿沿着M轴突形成。使用基于RNA-seq的方法,对所有三种Dis突变进行了定位,发现其中一种Dis突变体是由于自闭症相关基因神经海滩蛋白(nbea)的丢失。该提案将研究Nbea在电突触形成中的作用(Aim 1),将克隆在试点筛选中确定的其他Dis和Dis突变(Aim 2),将检查突变对突触功能和行为的影响(Aim 3),并将扩大试点筛选以阐明突触发生所需的进一步基因和途径(Aim 4)。在为期两年的指导阶段,我将开发模型系统,通过表征基因如何以几种方式调节电突触的形成:在体内突触发生过程中,突触货物定位的时间和空间特性是什么?突变体如何影响突触的功能?突变体如何影响神经网络的功能和行为?在弗雷德哈钦森癌症研究中心的塞西莉亚·莫恩斯实验室(主要导师),我将学习使用旋转技术对荧光标记的突触蛋白进行活细胞成像。
圆盘共聚焦显微镜这项技术将应用于所有的突变体,并将是第一个活的调查电突触的形成在体内。为了研究M突触和回路功能,我将访问康奈尔大学的Joe Fetcho实验室,学习M神经回路的电生理学,我将访问宾夕法尼亚大学佩雷尔曼医学院的Michael Granato实验室,学习M介导的逃避行为的行为分析。学到的技能将被带回西雅图在那里我将对变种人进行实验。对于电生理学,我将与华盛顿大学的Rachel Wong(主要共同导师)合作,在那里我将接受电生理学的持续培训,并将获得实验设备。至于行为方面,我将在莫恩斯实验室工作,那里有高速摄像机,可以捕捉M介导的逃避反应。电生理和行为分析将应用于所有突变体,并将是必不可少的连接电路中的功能缺陷的细胞生物学缺陷。在Fetcho和Granato las的培训将是短期和密集的,但这两名导师将持续向我提供技术专长和指导。Moens和Wong实验室的指导将持续进行,并提供广泛的互动和支持。通过这次培训,我将获得必要的经验和一套强大的工具和技术,以建立自己的独立研究小组。在项目的独立阶段,我将利用获得的技能来阐明在电突触处建立间隙连接的分子机制。拟议的研究将提供一个详细的分子,细胞和功能的观点如何神经回路形成在脊椎动物体内。导致神经回路布线错误或突触失衡的疾病是许多神经系统疾病的基础,包括自闭症和癫痫。在自闭症的情况下,几种分子途径(包括在Aim 1中检查的Nbea)与这种疾病有关。然而,解释这些基因如何组合在一起来解释这种综合征的统一理论仍然难以捉摸。研究神经回路布线和突触形成所需的遗传途径将有助于深入了解疾病状态,最终可以确定治疗目标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid reverse genetic screening using CRISPR in zebrafish.
在斑马鱼中使用CRISPR快速反向遗传筛查。
- DOI:10.1038/nmeth.3360
- 发表时间:2015-06
- 期刊:
- 影响因子:48
- 作者:Shah AN;Davey CF;Whitebirch AC;Miller AC;Moens CB
- 通讯作者:Moens CB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam C Miller其他文献
Adam C Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam C Miller', 18)}}的其他基金
Transgenic tools for revealing the contributions of electrical synapses to neural circuits
揭示电突触对神经回路贡献的转基因工具
- 批准号:
10012410 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Molecular Mechanisms of Electrical Synapse Formation in Vivo
体内电突触形成的分子机制
- 批准号:
10079028 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Molecular Mechanisms of Electrical Synapse Formation in Vivo
体内电突触形成的分子机制
- 批准号:
10543796 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Molecular Mechanisms of Electrical Synapse Formation in Vivo
体内电突触形成的分子机制
- 批准号:
10368043 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
9500819 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
9408653 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
9177889 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Molecular mechanisms of electrical synapse formation in vivo
体内电突触形成的分子机制
- 批准号:
8618053 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Studentship














{{item.name}}会员




