Comparative resistomics of Gram-negative bacterial pathogens
革兰氏阴性细菌病原体的比较耐药组学
基本信息
- 批准号:10548874
- 负责人:
- 金额:$ 73.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-10 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAutomobile DrivingBioinformaticsBioreactorsCiprofloxacinClinicalClinical DataColistinCollectionCommunitiesComparative StudyDataDevelopmentDevicesDiagnosticDrug CombinationsDrug resistanceEnhancement TechnologyEscherichia coliEvolutionFoundationsFrequenciesGenomicsGenotypeGram-Negative BacteriaGrantIndividualKlebsiella pneumoniaeKnowledgeLaboratory StudyMapsMeropenemMethodologyMethodsModelingModern MedicineMulti-Drug ResistanceMutationPharmaceutical PreparationsPhenotypePopulationPredispositionPseudomonas aeruginosaPublishingRegimenReportingResearchResistanceSamplingSeriesStandardizationTestingTherapeuticTimeTreatment ProtocolsValidationVariantantimicrobialcomparativecomparative genomicsdeep sequencingdriver mutationdrug candidatefitnessgenetic variantgenome sequencinggenome-widemutantnovelnovel therapeuticspathogenpathogenic Escherichia colipathogenic bacteriapredictive modelingsuccesstherapy developmenttigecyclinetranslational impacttreatment optimizationweb site
项目摘要
ABSTRACT
Increasing antibiotic resistance necessitates expanding research into the mechanisms by which bacterial
pathogens acquire and perpetuate drug resistance. Despite rapidly expanding genomic mapping of
resistance-conferring mutations in clinical isolates and laboratory studies, our knowledge of dynamics and
mechanisms underlying evolution of antimicrobial resistance is still insufficient. To fill-in this gap, the authors
of this proposal combine experimental evolution in a continuous culturing device, morbidostat, with time-
resolved ultradeep genomic sequencing of evolving bacterial cultures. The utility of the developed
morbidostat-based workflow is supported by published and ongoing studies with established antimicrobials
and experimental drug candidates. The preliminary results of comparative resistomics studies over a range
of Gram-negative bacterial species provided initial support to a premise that evolution of drug resistance in
morbidostat proceeds via a limited set of trajectories defined by a combination of resistance and fitness
constrains approximating clinical evolution, which favors selection of low-frequency/high-fitness over high-
frequency/low-fitness mutants. A comparative resistomics approach enables mapping of both universal and
strain-specific mechanisms as demonstrated in a recent proof-of-concept study on experimental evolution of
ciprofloxacin resistance in three Gram-negative bacteria. The proposed 5-year project will test the central
hypothesis and extend exploration of antimicrobial resistome by pursuing the following specific aims: (i) in
Aim 1, the established morbidostat-based workflow will be used to determine major mechanisms driving
resistance to broad-spectrum clinical antibiotics, ciprofloxacin, colistin, tigecycline and meropenem, in four
difficult-to-treat Gram-negative bacterial pathogens, Acinetobacter baumannii ATCC17978, P. aeruginosa
ATCC27853, E. coli ATCC25922, and K. pneumoniae ATCC13883; (ii) in Aim 2, a representative panel of
selected clones will be systematically characterized to assess the effects of individual mutations and
combinations thereof on acquired resistance and fitness; (iii) Aim 3 will leverage a moribidostat-based
workflow to make first steps toward experimental evolution of multidrug resistance focusing on A. baumannii
and starting from clones selected in single-drug evolution studies. The results that will be obtained in all
planned studies will be a subject of in-depth bioinformatics analysis (including comparison with public data
for clinical isolates), predictive modeling, integration and sharing with broad research community via a
specialized web-site on integrative Genomics of Evolution of Antimicrobial Resistance (iGEAR). The proposed
study is expected to have translational impacts in advancing methodology to support rational optimization of
antibiotic treatment regimens and development of new drugs with minimized resistibility.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREI L OSTERMAN其他文献
ANDREI L OSTERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREI L OSTERMAN', 18)}}的其他基金
Comparative resistomics of Gram-negative bacterial pathogens
革兰氏阴性细菌病原体的比较耐药组学
- 批准号:
10418253 - 财政年份:2022
- 资助金额:
$ 73.35万 - 项目类别:
Inhibitors of Staphylococcus aureus NaMN adenylyltransferase NadD
金黄色葡萄球菌 NaMN 腺苷酸转移酶 NadD 抑制剂
- 批准号:
8411585 - 财政年份:2012
- 资助金额:
$ 73.35万 - 项目类别:
Inhibitors of Staphylococcus aureus NaMN adenylyltransferase NadD
金黄色葡萄球菌 NaMN 腺苷酸转移酶 NadD 抑制剂
- 批准号:
8262600 - 财政年份:2012
- 资助金额:
$ 73.35万 - 项目类别:
Genomics of Coenzyme Metabolism in Bacterial Pathogens
细菌病原体辅酶代谢的基因组学
- 批准号:
7615572 - 财政年份:2007
- 资助金额:
$ 73.35万 - 项目类别:
Genomics of Coenzyme Metabolism in Bacterial Pathogens
细菌病原体辅酶代谢的基因组学
- 批准号:
7414783 - 财政年份:2007
- 资助金额:
$ 73.35万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 73.35万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 73.35万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 73.35万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 73.35万 - 项目类别:














{{item.name}}会员




