Structure and Mechanism of Non-Homologous End Joining

非同源末端连接的结构和机制

基本信息

  • 批准号:
    10546447
  • 负责人:
  • 金额:
    $ 34.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-11 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Summary Among all different types of DNA damages, double strand breaks (DSBs) are viewed as the most toxic ones that lead to genome instability. They are created by either endogenous agents such as reactive oxygen species, or exogenous ionizing radiation and chemicals. Unrepaired DSBs drive apoptosis and senescence, and incorrect DSB repair can lead to undesired genome rearrangements, such as deletions, translocations, and fusions. Non-homologous end-joining (NHEJ) pathway, in which the two broken DNA ends are directly ligated without referring to a homologous template, is the primary DSB repair pathway that remains active throughout the cell cycle. NHEJ is also responsible for the assembly of gene segments in V(D)J recombination, where various immunoglobulin genes are generated by exon recombination in immune cells. NHEJ is initialized by Ku heterodimer (Ku70/80) recognizing DSB ends. Upon recognizing a dsDNA broken end, Ku70/80 recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and assembles into the so-called DNA-PK holoenzyme. Other evolutionarily conserved NHEJ factors, including components of the ligase complex (DNA ligase IV, XRCC4 and XLF) are then recruited to the end reparation site. Successful DSB repair through NHEJ relies on the efficient bridging of two broken DNA ends, and this proposal aims to investigate the mechanism of NHEJ by directly visualizing the key steps of repair using single-particle cryo-EM. A more refined picture of the system specifically recognizing and correcting DSBs will provide an unprecedented, comprehensive view of these essential molecular machines during operation, and could lead to the development of novel treatments for various types of human cancer.
摘要 在所有不同类型的DNA损伤中,双链断裂(DSB)被认为是毒性最大的损伤 这导致了基因组的不稳定。它们是由内源性物质如活性氧产生的 物种,或外源电离辐射和化学物质。未修复的DSB会导致细胞凋亡和衰老, 不正确的DSB修复可能会导致不希望看到的基因组重排,例如缺失、易位、 和融合。非同源末端连接(NHEJ)途径,其中两个断裂的DNA末端直接 在没有参照同源模板的情况下连接,是保持活跃的主要DSB修复途径 在整个细胞周期中。NHEJ还负责V(D)J重组中基因片段的组装, 其中各种免疫球蛋白基因是通过免疫细胞中的外显子重组产生的。NHEJ已初始化 通过Ku杂二聚体(Ku70/80)识别DSB末端。在识别出dsDNA断端后,Ku70/80招募了 DNA依赖的蛋白激酶催化亚单位(DNA-PKcs)并组装成所谓的DNA-PK 全酶。其他进化上保守的NHEJ因子,包括连接酶复合体的成分(DNA 连接酶IV、XRCC4和XLF)然后被招募到末端修复位点。通过NHEJ成功修复DSB 依赖于两个断裂的DNA末端的有效桥联,这一提议旨在研究 NHEJ通过使用单粒子冷冻-EM直接可视化修复的关键步骤。一幅更精致的照片 专门识别和纠正DSB的系统将提供前所未有的、全面的视角 这些基本的分子机器在操作过程中,并可能导致新的治疗方法的开发 治疗各种类型的人类癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan He其他文献

Yuan He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan He', 18)}}的其他基金

Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
  • 批准号:
    10445554
  • 财政年份:
    2022
  • 资助金额:
    $ 34.56万
  • 项目类别:
Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
  • 批准号:
    10625407
  • 财政年份:
    2022
  • 资助金额:
    $ 34.56万
  • 项目类别:
Molecular mechanism of NLRP3 inflammasome activation
NLRP3炎症小体激活的分子机制
  • 批准号:
    10158435
  • 财政年份:
    2020
  • 资助金额:
    $ 34.56万
  • 项目类别:
Molecular mechanism of NLRP3 inflammasome activation
NLRP3炎症小体激活的分子机制
  • 批准号:
    10612352
  • 财政年份:
    2020
  • 资助金额:
    $ 34.56万
  • 项目类别:
Structure and Mechanism of Non-Homologous End Joining
非同源末端连接的结构和机制
  • 批准号:
    10331036
  • 财政年份:
    2020
  • 资助金额:
    $ 34.56万
  • 项目类别:
Molecular mechanism of NLRP3 inflammasome activation
NLRP3炎症小体激活的分子机制
  • 批准号:
    10390480
  • 财政年份:
    2020
  • 资助金额:
    $ 34.56万
  • 项目类别:
ROLE OF NEK7 PROTEIN IN NLRP3 INFLAMMASOME ACTIVATION AND INFLAMMATION
NEK7 蛋白在 NLRP3 炎症小体激活和炎症中的作用
  • 批准号:
    9179168
  • 财政年份:
    2017
  • 资助金额:
    $ 34.56万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了