Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
基本信息
- 批准号:10554766
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-13 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntibodiesAppearanceArchitectureAutomobile DrivingBayesian learningBehaviorBiopsyCD8-Positive T-LymphocytesCancer PatientCarcinomaCell CommunicationCellsClear CellClear cell renal cell carcinomaClinicalClinical InvestigatorConventional (Clear Cell) Renal Cell CarcinomaDataDevelopmentDiseaseDissectionEnvironmentGene ExpressionGenetic TranscriptionGoalsHumanImageImmuneImmune checkpoint inhibitorImmunotherapyInterventionKidneyKnowledgeLearningMalignant - descriptorMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of ovaryMethodsMicrosatellite InstabilityModelingMolecularMolecular AnalysisMorphologyMusOutcomeOvarianOvarian Clear Cell TumorOvarian Endometrioid AdenocarcinomaOvarian Serous AdenocarcinomaPatient SelectionPatientsPhenotypePropertyProteomicsSample SizeSignal TransductionStromal CellsSystems AnalysisSystems BiologyTP53 geneTestingTissue MicroarrayTransgenic ModelTranslationsTumor TissueValidationWorkbasecancer cellcancer typecell typecellular imagingcheckpoint therapycomputer frameworkdata resourceexperienceimaging platformimmunogenicimprovedindexinginnovationlearning strategymanmouse modelnovelnovel markerobjective response ratepembrolizumabpredicting responsepredictive markerpreservationrare cancerresponsesingle-cell RNA sequencingtranscriptome sequencingtreatment responsetumortumor behaviortumor microenvironmenttumor-immune system interactions
项目摘要
Clear cell ovarian cancer (ccOC) is a rare and lethal cancer with few treatment options. Based on molecular
analysis ccOC appears intrinsically immunogenic but with an immunosuppressive tumor microenvironment,
similar to other ovarian cancer types. However, ccOC is very distinct from high grade serous ovarian
carcinoma. Strikingly, it is similar in gene expression profiles to more frequent clear cell renal cell carcinomas
(ccRCC), suggesting that clear cell cancers share intrinsic mechanistic or microenvironment properties, not just
morphological appearance. Around 25% of ccRCC respond well to immune checkpoint inhibitors (ICIs), but
markers for predicting response are lacking. The objective response rate for monotherapy pembrolizumab in
one study was 33.3% for ccOC patients; but, in general, it is unknown which clear cell cancer patients could
benefit from ICI treatment. Recent work has shown that tumor behavior is driven not just by cellular
composition, but also by the spatial organization of different cell types including immune and stromal cells, as
well as malignant cells themselves. Knowledge of clear cell cancer tumor microenvironments and their spatial
architecture is lacking. Addressing this gap will improve our understanding of mechanisms of response to ICIs
in clear cell cancers, including rare ones like ccOC, and improve selection of patients for immunotherapy.
This study will use systems biology approaches to (i) elucidate and compare the cell types and their
transcriptional states present in ccOC and ccRCC; (ii) characterize the spatial architecture of these cells within
tumors using the CODEX (CODetection by indEXing) single cell proteomic imaging platform; and (iii) model
and validate cell-cell interactions in the spatial tumor microenvironment that drive clear cell cancer response to
immunotherapy through extensions of causal signaling inference algorithms to incorporate spatial context, and
to optimize experimental validations in mouse models that maximize the information gain about interaction
networks. Similar intrinsic and tumor microenvironmental features shared by ccOC and ccRCC, will nominate
common mechanisms of immunotherapy response, and identify the subset of both who might benefit from
treatment with ICIs. Successful development and application of these methods to clear cell cancers will
establish a framework that can be applied to other cancer types, notably to rare ones.
The expected outcome of this proposal is a comprehensive definition and dissection of the tumor
microenvironment of ccRCC and ccOC. It will identify common features and mechanisms between these clear
cell cancers, providing a basis to extend the approach to other classes of cancer, opening new avenues for
treatment, particularly in rare cancer types.
透明细胞卵巢癌 (ccOC) 是一种罕见且致命的癌症,治疗选择很少。基于分子
分析 ccOC 具有内在的免疫原性,但具有免疫抑制性肿瘤微环境,
与其他卵巢癌类型相似。然而,ccOC 与高级浆液性卵巢非常不同
癌。引人注目的是,它的基因表达谱与更常见的透明细胞肾细胞癌相似
(ccRCC),表明透明细胞癌具有内在的机制或微环境特性,而不仅仅是
形态外观。大约 25% 的 ccRCC 对免疫检查点抑制剂 (ICIs) 反应良好,但是
缺乏预测反应的标记。帕博利珠单抗单药治疗的客观缓解率
一项针对 ccOC 患者的研究为 33.3%;但总的来说,尚不清楚哪些透明细胞癌患者可以
受益于 ICI 治疗。最近的研究表明,肿瘤行为不仅是由细胞驱动的
组成,还受不同细胞类型(包括免疫细胞和基质细胞)的空间组织的影响,如
以及恶性细胞本身。了解透明细胞癌肿瘤微环境及其空间
缺乏架构。解决这一差距将提高我们对 ICI 响应机制的理解
透明细胞癌,包括像 ccOC 这样的罕见癌症,并改善免疫治疗患者的选择。
这项研究将使用系统生物学方法来(i)阐明和比较细胞类型及其
ccOC 和 ccRCC 中存在的转录状态; (ii) 描述这些细胞的空间结构
使用 CODEX (CODetection by indEXing) 单细胞蛋白质组成像平台对肿瘤进行检测; (iii) 型号
并验证空间肿瘤微环境中细胞与细胞的相互作用,从而驱动透明细胞癌的反应
通过扩展因果信号推理算法以纳入空间背景来进行免疫治疗,以及
优化小鼠模型中的实验验证,最大化交互信息增益
网络。 ccOC 和 ccRCC 具有相似的内在和肿瘤微环境特征,将提名
免疫治疗反应的常见机制,并确定可能受益于的两者的子集
ICI 治疗。这些方法的成功开发和应用将有助于清除细胞癌
建立一个可应用于其他癌症类型,特别是罕见癌症的框架。
该提案的预期结果是对肿瘤的全面定义和解剖
ccRCC 和 ccOC 的微环境。它将确定这些明确的共同特征和机制
细胞癌,为将该方法扩展到其他类型的癌症提供了基础,开辟了新的途径
治疗,特别是罕见癌症类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew J. Gentles其他文献
Annotation of the Drosophila genome
果蝇基因组的注释
- DOI:
10.1038/35077152 - 发表时间:
2001-05-01 - 期刊:
- 影响因子:48.500
- 作者:
Samuel Karlin;Aviv Bergman;Andrew J. Gentles - 通讯作者:
Andrew J. Gentles
Single-cell genomics in AML: extending the frontiers of AML research
急性髓系白血病中的单细胞基因组学:拓展急性髓系白血病研究的前沿
- DOI:
10.1182/blood.2021014670 - 发表时间:
2023-01-26 - 期刊:
- 影响因子:23.100
- 作者:
Asiri Ediriwickrema;Andrew J. Gentles;Ravindra Majeti - 通讯作者:
Ravindra Majeti
Data mining for mutation-specific targets in acute myeloid leukemia
急性髓系白血病中突变特异性靶点的数据挖掘
- DOI:
10.1038/s41375-019-0387-y - 发表时间:
2019-02-06 - 期刊:
- 影响因子:13.400
- 作者:
Brooks Benard;Andrew J. Gentles;Thomas Köhnke;Ravindra Majeti;Daniel Thomas - 通讯作者:
Daniel Thomas
An ultrasensitive method for detection of cell-free RNA
一种用于检测无细胞 RNA 的超灵敏方法
- DOI:
10.1038/s41586-025-08834-1 - 发表时间:
2025-04-16 - 期刊:
- 影响因子:48.500
- 作者:
Monica C. Nesselbush;Bogdan A. Luca;Young-Jun Jeon;Isabel Jabara;Catherine B. Meador;Andrea Garofalo;Michael S. Binkley;Angela B. Hui;Iris van ‘t Erve;Nova Xu;William Y. Shi;Kevin J. Liu;Takeshi Sugio;Noah Kastelowitz;Emily G. Hamilton;Chih Long Liu;Mari Olsen;Rene F. Bonilla;Yi Peng Wang;Alice Jiang;Brianna Lau;Jordan Eichholz;Mandeep Banwait;Joseph Schroers-Martin;Jan Boegeholz;Daniel A. King;Helen Luikart;Mohammad S. Esfahani;Mahya Mehrmohamadi;Henning Stehr;Tyler Raclin;Robert Tibshirani;Kiran Khush;Sandy Srinivas;Helena Yu;Angela J. Rogers;Viswam S. Nair;James M. Isbell;Bob T. Li;Zofia Piotrowska;Lecia V. Sequist;Aaron N. Hata;Joel W. Neal;Heather A. Wakelee;Andrew J. Gentles;Ash A. Alizadeh;Maximilian Diehn - 通讯作者:
Maximilian Diehn
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences
有袋动物家养单孔目动物的基因组揭示了非编码序列的创新
- DOI:
10.1038/nature05805 - 发表时间:
2007-05-10 - 期刊:
- 影响因子:48.500
- 作者:
Tarjei S. Mikkelsen;Matthew J. Wakefield;Bronwen Aken;Chris T. Amemiya;Jean L. Chang;Shannon Duke;Manuel Garber;Andrew J. Gentles;Leo Goodstadt;Andreas Heger;Jerzy Jurka;Michael Kamal;Evan Mauceli;Stephen M. J. Searle;Ted Sharpe;Michelle L. Baker;Mark A. Batzer;Panayiotis V. Benos;Katherine Belov;Michele Clamp;April Cook;James Cuff;Radhika Das;Lance Davidow;Janine E. Deakin;Melissa J. Fazzari;Jacob L. Glass;Manfred Grabherr;John M. Greally;Wanjun Gu;Timothy A. Hore;Gavin A. Huttley;Michael Kleber;Randy L. Jirtle;Edda Koina;Jeannie T. Lee;Shaun Mahony;Marco A. Marra;Robert D. Miller;Robert D. Nicholls;Mayumi Oda;Anthony T. Papenfuss;Zuly E. Parra;David D. Pollock;David A. Ray;Jacqueline E. Schein;Terence P. Speed;Katherine Thompson;John L. VandeBerg;Claire M. Wade;Jerilyn A. Walker;Paul D. Waters;Caleb Webber;Jennifer R. Weidman;Xiaohui Xie;Michael C. Zody;Jennifer A. Marshall Graves;Chris P. Ponting;Matthew Breen;Paul B. Samollow;Eric S. Lander;Kerstin Lindblad-Toh - 通讯作者:
Kerstin Lindblad-Toh
Andrew J. Gentles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew J. Gentles', 18)}}的其他基金
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
- 批准号:
10568399 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10704140 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
The prognostic landscape of gender- and ethnicity-specific immune influences on cancer outcomes
性别和种族特异性免疫对癌症结果影响的预后情况
- 批准号:
9888350 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Research Grant














{{item.name}}会员




