Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
基本信息
- 批准号:10568399
- 负责人:
- 金额:$ 62.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureAtlas of Cancer Mortality in the United StatesAwarenessBiological MarkersBiopsyCancer PatientCarcinomaCellsClinicalComputer AnalysisCustomDataData SetDisease ResistanceEcosystemEnvironmentExclusionFemaleFutureGene ExpressionGenesGenetic TranscriptionImageImmuneImmunotherapyInfiltrationInflammatoryKnowledgeLearningMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of urinary bladderMapsMeta-AnalysisMethodsMethylationModelingNon-Small-Cell Lung CarcinomaOutcomePatientsPhenotypePopulationProcessPrognosisRegulationRelapseResearch PersonnelResistanceSamplingSerousSex DifferencesSignal TransductionSolid CarcinomaStainsT-LymphocyteTestingThe Cancer Genome AtlasTissue MicroarrayTissuesTreatment outcomeWorkbiomarker identificationcancer typecell behaviorcell typecellular imagingcohortcomputer frameworkcytotoxicexhaustexperiencehuman tissuein vivo evaluationinnovationmalemelanomanew therapeutic targetpotential biomarkerprognosticprogramsresearch clinical testingresponsesexsingle-cell RNA sequencingsuccesssurvival outcometargeted cancer therapytherapeutic targettranscriptome sequencingtreatment responsetumor
项目摘要
Project Summary
The cellular makeup of tumors can radically influence response to treatment, and
survival outcomes. Biomarkers derived from tumor biopsies have had modest success in
their clinical utility for prognosis or guiding treatment decisions, being confounded by
factors such as cellular composition of tissues Moreover, different biomarkers may be
needed in female vs male patients. In prior work we showed how meta-analysis of large
clinically annotated public cancer datasets with clinical annotations can robustly identify
specific genes and processes associated with survival for patients in both pan-cancer and
cancer-specific ways. Here we still systematically investigate cancer-specific prognostic
cell types through integration of single cell RNA-seq (scRNAseq) with bulk RNA-seq and
methylation data. We will validate selected findings in tissue microarrays.
First, we will identify cancer-specific cell transcriptional states and ecosystems
associated with survival and treatment response, extending prior work that identified 10
different “ecotypes” of co-occurring cell states across carcinomas. Second, we will extend
our framework to isolate cancer-specific cell-type-specific methylation profiles and their
correlation with imputed gene expression across populations using paired bulk RNA-seq
and methylation from TCGA. Third, we will validate survival associations of cancer-
specific cell states by staining human tissue microarrays. We will focus on high grade
serous ovarian cancer (HGSOC), which has dire prognosis, and non small-cell lung
cancer (NSCLC) for which we have extensive information on immunotherapy response.
We will use CODEX imaging on large tissue sections to assess the spatial organization
of outcome-related cell states in NSCLC and HGSOC. Overall, we will comprehensively
map cancer-specific cell states and ecotypes across malignancies, identifying potential
biomarkers and possible new therapeutic targets.
项目摘要
肿瘤的细胞组成可以从根本上影响对治疗的反应,
生存结果。来源于肿瘤活检的生物标志物在肿瘤诊断方面取得了一定的成功。
其用于预后或指导治疗决策的临床效用,被以下因素混淆
此外,不同的生物标志物可能是
女性vs男性患者需要。在之前的工作中,我们展示了如何对大型
具有临床注释的临床注释的公共癌症数据集可以鲁棒地识别
与泛癌和非泛癌患者生存相关的特定基因和过程
癌症特有的方式。在这里,我们仍然系统地研究癌症特异性预后
通过将单细胞RNA-seq(scRNAseq)与批量RNA-seq整合,
甲基化数据。我们将在组织微阵列中验证选定的发现。
首先,我们将确定癌症特异性细胞转录状态和生态系统
与生存和治疗反应相关,扩展了先前的工作,确定了10
不同的“生态型”的共同发生的细胞状态跨癌。第二,我们将扩大
我们的框架,以分离癌症特异性细胞类型特异性甲基化谱和他们的
使用配对批量RNA-seq与人群间插补基因表达的相关性
和来自TCGA的甲基化。第三,我们将验证癌症的生存相关性-
通过对人体组织微阵列进行染色来检测特定细胞状态。我们将专注于高等级
浆液性卵巢癌(HGSOC)预后差,非小细胞肺癌(NSCLC)
癌症(NSCLC),我们有关于免疫治疗反应的广泛信息。
我们将在大组织切片上使用CODEX成像来评估空间组织
NSCLC和HGSOC中的结果相关细胞状态。总的来说,我们将全面
绘制癌症特异性细胞状态和恶性肿瘤的生态类型,
生物标志物和可能的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew J. Gentles其他文献
Annotation of the Drosophila genome
果蝇基因组的注释
- DOI:
10.1038/35077152 - 发表时间:
2001-05-01 - 期刊:
- 影响因子:48.500
- 作者:
Samuel Karlin;Aviv Bergman;Andrew J. Gentles - 通讯作者:
Andrew J. Gentles
Single-cell genomics in AML: extending the frontiers of AML research
急性髓系白血病中的单细胞基因组学:拓展急性髓系白血病研究的前沿
- DOI:
10.1182/blood.2021014670 - 发表时间:
2023-01-26 - 期刊:
- 影响因子:23.100
- 作者:
Asiri Ediriwickrema;Andrew J. Gentles;Ravindra Majeti - 通讯作者:
Ravindra Majeti
Data mining for mutation-specific targets in acute myeloid leukemia
急性髓系白血病中突变特异性靶点的数据挖掘
- DOI:
10.1038/s41375-019-0387-y - 发表时间:
2019-02-06 - 期刊:
- 影响因子:13.400
- 作者:
Brooks Benard;Andrew J. Gentles;Thomas Köhnke;Ravindra Majeti;Daniel Thomas - 通讯作者:
Daniel Thomas
An ultrasensitive method for detection of cell-free RNA
一种用于检测无细胞 RNA 的超灵敏方法
- DOI:
10.1038/s41586-025-08834-1 - 发表时间:
2025-04-16 - 期刊:
- 影响因子:48.500
- 作者:
Monica C. Nesselbush;Bogdan A. Luca;Young-Jun Jeon;Isabel Jabara;Catherine B. Meador;Andrea Garofalo;Michael S. Binkley;Angela B. Hui;Iris van ‘t Erve;Nova Xu;William Y. Shi;Kevin J. Liu;Takeshi Sugio;Noah Kastelowitz;Emily G. Hamilton;Chih Long Liu;Mari Olsen;Rene F. Bonilla;Yi Peng Wang;Alice Jiang;Brianna Lau;Jordan Eichholz;Mandeep Banwait;Joseph Schroers-Martin;Jan Boegeholz;Daniel A. King;Helen Luikart;Mohammad S. Esfahani;Mahya Mehrmohamadi;Henning Stehr;Tyler Raclin;Robert Tibshirani;Kiran Khush;Sandy Srinivas;Helena Yu;Angela J. Rogers;Viswam S. Nair;James M. Isbell;Bob T. Li;Zofia Piotrowska;Lecia V. Sequist;Aaron N. Hata;Joel W. Neal;Heather A. Wakelee;Andrew J. Gentles;Ash A. Alizadeh;Maximilian Diehn - 通讯作者:
Maximilian Diehn
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences
有袋动物家养单孔目动物的基因组揭示了非编码序列的创新
- DOI:
10.1038/nature05805 - 发表时间:
2007-05-10 - 期刊:
- 影响因子:48.500
- 作者:
Tarjei S. Mikkelsen;Matthew J. Wakefield;Bronwen Aken;Chris T. Amemiya;Jean L. Chang;Shannon Duke;Manuel Garber;Andrew J. Gentles;Leo Goodstadt;Andreas Heger;Jerzy Jurka;Michael Kamal;Evan Mauceli;Stephen M. J. Searle;Ted Sharpe;Michelle L. Baker;Mark A. Batzer;Panayiotis V. Benos;Katherine Belov;Michele Clamp;April Cook;James Cuff;Radhika Das;Lance Davidow;Janine E. Deakin;Melissa J. Fazzari;Jacob L. Glass;Manfred Grabherr;John M. Greally;Wanjun Gu;Timothy A. Hore;Gavin A. Huttley;Michael Kleber;Randy L. Jirtle;Edda Koina;Jeannie T. Lee;Shaun Mahony;Marco A. Marra;Robert D. Miller;Robert D. Nicholls;Mayumi Oda;Anthony T. Papenfuss;Zuly E. Parra;David D. Pollock;David A. Ray;Jacqueline E. Schein;Terence P. Speed;Katherine Thompson;John L. VandeBerg;Claire M. Wade;Jerilyn A. Walker;Paul D. Waters;Caleb Webber;Jennifer R. Weidman;Xiaohui Xie;Michael C. Zody;Jennifer A. Marshall Graves;Chris P. Ponting;Matthew Breen;Paul B. Samollow;Eric S. Lander;Kerstin Lindblad-Toh - 通讯作者:
Kerstin Lindblad-Toh
Andrew J. Gentles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew J. Gentles', 18)}}的其他基金
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10554766 - 财政年份:2022
- 资助金额:
$ 62.28万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10704140 - 财政年份:2022
- 资助金额:
$ 62.28万 - 项目类别:
The prognostic landscape of gender- and ethnicity-specific immune influences on cancer outcomes
性别和种族特异性免疫对癌症结果影响的预后情况
- 批准号:
9888350 - 财政年份:2019
- 资助金额:
$ 62.28万 - 项目类别: