Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers

透明细胞癌免疫疗法驱动反应机制的系统分析

基本信息

  • 批准号:
    10704140
  • 负责人:
  • 金额:
    $ 50.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-13 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Clear cell ovarian cancer (ccOC) is a rare and lethal cancer with few treatment options. Based on molecular analysis ccOC appears intrinsically immunogenic but with an immunosuppressive tumor microenvironment, similar to other ovarian cancer types. However, ccOC is very distinct from high grade serous ovarian carcinoma. Strikingly, it is similar in gene expression profiles to more frequent clear cell renal cell carcinomas (ccRCC), suggesting that clear cell cancers share intrinsic mechanistic or microenvironment properties, not just morphological appearance. Around 25% of ccRCC respond well to immune checkpoint inhibitors (ICIs), but markers for predicting response are lacking. The objective response rate for monotherapy pembrolizumab in one study was 33.3% for ccOC patients; but, in general, it is unknown which clear cell cancer patients could benefit from ICI treatment. Recent work has shown that tumor behavior is driven not just by cellular composition, but also by the spatial organization of different cell types including immune and stromal cells, as well as malignant cells themselves. Knowledge of clear cell cancer tumor microenvironments and their spatial architecture is lacking. Addressing this gap will improve our understanding of mechanisms of response to ICIs in clear cell cancers, including rare ones like ccOC, and improve selection of patients for immunotherapy. This study will use systems biology approaches to (i) elucidate and compare the cell types and their transcriptional states present in ccOC and ccRCC; (ii) characterize the spatial architecture of these cells within tumors using the CODEX (CODetection by indEXing) single cell proteomic imaging platform; and (iii) model and validate cell-cell interactions in the spatial tumor microenvironment that drive clear cell cancer response to immunotherapy through extensions of causal signaling inference algorithms to incorporate spatial context, and to optimize experimental validations in mouse models that maximize the information gain about interaction networks. Similar intrinsic and tumor microenvironmental features shared by ccOC and ccRCC, will nominate common mechanisms of immunotherapy response, and identify the subset of both who might benefit from treatment with ICIs. Successful development and application of these methods to clear cell cancers will establish a framework that can be applied to other cancer types, notably to rare ones. The expected outcome of this proposal is a comprehensive definition and dissection of the tumor microenvironment of ccRCC and ccOC. It will identify common features and mechanisms between these clear cell cancers, providing a basis to extend the approach to other classes of cancer, opening new avenues for treatment, particularly in rare cancer types.
透明细胞卵巢癌(ccOC)是一种罕见且致命的癌症,治疗选择很少。基于分子 分析ccOC表现出固有的免疫原性但具有免疫抑制性肿瘤微环境, 与其他类型的卵巢癌相似。然而,ccOC与高级别浆液性卵巢癌非常不同, carcinoma.引人注目的是,它与更常见的肾透明细胞癌的基因表达谱相似 (ccRCC),表明透明细胞癌共享内在机制或微环境特性,而不仅仅是 形态学外观大约25%的ccRCC对免疫检查点抑制剂(ICI)反应良好,但 缺乏预测反应的标记。帕博利珠单抗单药治疗的客观缓解率 一项研究是33.3%的ccOC患者;但一般来说,尚不清楚哪些透明细胞癌患者可能 从ICI治疗中获益。最近的研究表明,肿瘤的行为不仅是由细胞驱动的, 组成,而且还取决于不同细胞类型(包括免疫细胞和基质细胞)的空间组织,例如 以及恶性细胞本身。了解透明细胞癌肿瘤微环境及其空间分布 建筑缺乏。解决这一差距将提高我们对国际刑事法院的反应机制的理解 透明细胞癌,包括罕见的ccOC,并改善免疫治疗患者的选择。 本研究将使用系统生物学方法(i)阐明和比较细胞类型及其 存在于ccOC和ccRCC中的转录状态;(ii)表征这些细胞在 使用CODEX(CODetection by indEXing)单细胞蛋白质组成像平台的肿瘤;和(iii)模型 并验证空间肿瘤微环境中的细胞-细胞相互作用, 通过扩展因果信号推理算法以纳入空间背景的免疫疗法,以及 优化小鼠模型中的实验验证,最大限度地提高有关相互作用的信息增益 网络. ccOC和ccRCC具有相似的内在和肿瘤微环境特征, 免疫治疗反应的共同机制,并确定两者的子集谁可能受益于 用ICI治疗。成功开发和应用这些方法来清除细胞癌, 建立一个可以应用于其他癌症类型的框架,特别是罕见的癌症。 这一建议的预期成果是对肿瘤的全面定义和解剖 ccRCC和ccOC的微环境。它将确定这些明确的机制之间的共同特点和机制 细胞癌症,为将该方法扩展到其他类型癌症提供基础,开辟新的途径 治疗,特别是在罕见的癌症类型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew J. Gentles其他文献

Annotation of the Drosophila genome
果蝇基因组的注释
  • DOI:
    10.1038/35077152
  • 发表时间:
    2001-05-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Samuel Karlin;Aviv Bergman;Andrew J. Gentles
  • 通讯作者:
    Andrew J. Gentles
Single-cell genomics in AML: extending the frontiers of AML research
急性髓系白血病中的单细胞基因组学:拓展急性髓系白血病研究的前沿
  • DOI:
    10.1182/blood.2021014670
  • 发表时间:
    2023-01-26
  • 期刊:
  • 影响因子:
    23.100
  • 作者:
    Asiri Ediriwickrema;Andrew J. Gentles;Ravindra Majeti
  • 通讯作者:
    Ravindra Majeti
Data mining for mutation-specific targets in acute myeloid leukemia
急性髓系白血病中突变特异性靶点的数据挖掘
  • DOI:
    10.1038/s41375-019-0387-y
  • 发表时间:
    2019-02-06
  • 期刊:
  • 影响因子:
    13.400
  • 作者:
    Brooks Benard;Andrew J. Gentles;Thomas Köhnke;Ravindra Majeti;Daniel Thomas
  • 通讯作者:
    Daniel Thomas
An ultrasensitive method for detection of cell-free RNA
一种用于检测无细胞 RNA 的超灵敏方法
  • DOI:
    10.1038/s41586-025-08834-1
  • 发表时间:
    2025-04-16
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Monica C. Nesselbush;Bogdan A. Luca;Young-Jun Jeon;Isabel Jabara;Catherine B. Meador;Andrea Garofalo;Michael S. Binkley;Angela B. Hui;Iris van ‘t Erve;Nova Xu;William Y. Shi;Kevin J. Liu;Takeshi Sugio;Noah Kastelowitz;Emily G. Hamilton;Chih Long Liu;Mari Olsen;Rene F. Bonilla;Yi Peng Wang;Alice Jiang;Brianna Lau;Jordan Eichholz;Mandeep Banwait;Joseph Schroers-Martin;Jan Boegeholz;Daniel A. King;Helen Luikart;Mohammad S. Esfahani;Mahya Mehrmohamadi;Henning Stehr;Tyler Raclin;Robert Tibshirani;Kiran Khush;Sandy Srinivas;Helena Yu;Angela J. Rogers;Viswam S. Nair;James M. Isbell;Bob T. Li;Zofia Piotrowska;Lecia V. Sequist;Aaron N. Hata;Joel W. Neal;Heather A. Wakelee;Andrew J. Gentles;Ash A. Alizadeh;Maximilian Diehn
  • 通讯作者:
    Maximilian Diehn
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences
有袋动物家养单孔目动物的基因组揭示了非编码序列的创新
  • DOI:
    10.1038/nature05805
  • 发表时间:
    2007-05-10
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Tarjei S. Mikkelsen;Matthew J. Wakefield;Bronwen Aken;Chris T. Amemiya;Jean L. Chang;Shannon Duke;Manuel Garber;Andrew J. Gentles;Leo Goodstadt;Andreas Heger;Jerzy Jurka;Michael Kamal;Evan Mauceli;Stephen M. J. Searle;Ted Sharpe;Michelle L. Baker;Mark A. Batzer;Panayiotis V. Benos;Katherine Belov;Michele Clamp;April Cook;James Cuff;Radhika Das;Lance Davidow;Janine E. Deakin;Melissa J. Fazzari;Jacob L. Glass;Manfred Grabherr;John M. Greally;Wanjun Gu;Timothy A. Hore;Gavin A. Huttley;Michael Kleber;Randy L. Jirtle;Edda Koina;Jeannie T. Lee;Shaun Mahony;Marco A. Marra;Robert D. Miller;Robert D. Nicholls;Mayumi Oda;Anthony T. Papenfuss;Zuly E. Parra;David D. Pollock;David A. Ray;Jacqueline E. Schein;Terence P. Speed;Katherine Thompson;John L. VandeBerg;Claire M. Wade;Jerilyn A. Walker;Paul D. Waters;Caleb Webber;Jennifer R. Weidman;Xiaohui Xie;Michael C. Zody;Jennifer A. Marshall Graves;Chris P. Ponting;Matthew Breen;Paul B. Samollow;Eric S. Lander;Kerstin Lindblad-Toh
  • 通讯作者:
    Kerstin Lindblad-Toh

Andrew J. Gentles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew J. Gentles', 18)}}的其他基金

Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
  • 批准号:
    10568399
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
Outreach Core
外展核心
  • 批准号:
    10729468
  • 财政年份:
    2023
  • 资助金额:
    $ 50.25万
  • 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
  • 批准号:
    10554766
  • 财政年份:
    2022
  • 资助金额:
    $ 50.25万
  • 项目类别:
The prognostic landscape of gender- and ethnicity-specific immune influences on cancer outcomes
性别和种族特异性免疫对癌症结果影响的预后情况
  • 批准号:
    9888350
  • 财政年份:
    2019
  • 资助金额:
    $ 50.25万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了