Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
基本信息
- 批准号:10552675
- 负责人:
- 金额:$ 129.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-19 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAll of Us Research ProgramArchitectureAreaArtificial IntelligenceBehavioralComplexComputational ScienceDataData ScienceData SetDepartment of DefenseDietDietary PracticesEconomicsFaceFood PatternsFundingGenesGeneticGoalsHealthHuman ResourcesIndividualIndividual DifferencesInformaticsInformation SystemsKnowledgeLaboratoriesLearningMetabolismMethodsModelingNutritionalPathway interactionsPersonsPhysiologicalPrecision HealthProteinsPublic HealthResearchResourcesSkinStructureSystemUnited States National Institutes of HealthVisionbuilt environmentclinical applicationcloud basedcomputing resourcescontextual factorsflexibilityindividual responseinsightmicrobiomenovel strategiesnutritionoperationprecision nutritionprediction algorithmpreservationprogramsresponsesocialtooltool developmentvirtualvirtual humanvirtual laboratory
项目摘要
Abstract – Overall AIMINGS Center
The vision of this proposed Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and
Systems (AIMINGS) Center is to implement computational and data science approaches and tools to advance
nutrition for precision health in a way that accounts for the complex systems involved. Many existing data sets
include extraneous data, making them difficult to analyze at best, and at worst, prone to generating misleading
or biased insights. Thus, there is a need to for new approaches, methods, and tools to collapse and distill data
to make them more Artificial Intelligence (AI)-ready and ready for a range of different analyses. This coincides
with the goal of Project 1: to develop and utilize The Data Distiller for Precision Nutrition, a set of
approached and tools that can collapse and distill nutrition-relevant data to create datasets that are AI-
ready and ready for a range of other analyses. The first objective of the Nutrition for Precision Health (NPH)
program is to “examine individual differences observed in response to different diets by studying the
interactions between diet, genes, proteins, microbiome, metabolism and other individual contextual factors.”
Given the type of missing data we face in nutrition, and the importance of establishing causal relationships
rather than correlations, there is a need for new imputation methods. To address this, Project 2, the Causal
Relationship Disentangler, will introduce new approaches for handling missing data while preserving
causal structure. Learning how to transfer causal knowledge and doing so with missing data is critical
for realizing the potential of nutrition for precision health. The NPH program’s other objectives are “to use
AI to develop algorithms to predict individual responses to foods and dietary patterns,” and “to validate
algorithms for clinical application.” This requires bringing different causal pathways together to understand how
they interact. Agent-based models (ABMs) can help and serve as "virtual laboratories" to predict how different
people may respond to a particular diet under different circumstances. Therefore, the goal of Project 3 (The
Virtual Human for Precision Nutrition) is to develop an ABM tool that can help better understand and
predict an individual's response to food and dietary patterns, while bringing together and accounting
for the interactions between genetic, physiological, and behavioral factors. However, focusing on the
individual alone will not be enough to address all aspects of NPH. Therefore, the Virtual Public Health
Precision Nutrition Laboratory (Project 4) will develop ABMs that represent and account for the
systems outside individuals such as their social, economic, and built environments. An Administrative
and Coordination Core will oversee all operations and a pilot program. A Data Systems Core (DSC) will
leverage the substantial computing resources of CUNY, West Point, and the Department of Defense to create
a flexible cloud-based architecture for data flow and a collaborative workspace. A Computational Systems
Core will provide resources and personnel to support the DSC and tool development/deployment.
摘要-总体目标中心
这一建议的人工智能,建模和信息学的愿景,营养指导和
系统(AIMINGS)中心是实施计算和数据科学方法和工具,以推进
营养对精准健康的影响,以一种解释所涉及的复杂系统的方式。许多现有的数据集
包括无关数据,这使得它们在最好情况下难以分析,在最坏的情况下,容易产生误导
或有偏见的见解。因此,需要新的途径、方法和工具来折叠和提取数据
使它们更人工智能(AI)-准备好并准备好进行一系列不同的分析。这与
项目1的目标是:开发和利用精准营养数据蒸馏器,一套
方法和工具,可以折叠和提取营养相关的数据,以创建AI数据集-
准备好进行一系列的其他分析。精准健康营养(NPH)
该项目的目的是“通过研究不同的饮食习惯,
饮食、基因、蛋白质、微生物组、新陈代谢和其他个体环境因素之间的相互作用。”
鉴于我们在营养方面面临的缺失数据的类型,以及建立因果关系的重要性,
需要的不是相关性,而是新的估算方法。为了解决这个问题,项目2,因果关系
Relationship Disentangler将引入新的方法来处理丢失的数据,同时保留
因果结构学习如何传递因果知识,并在缺失数据的情况下这样做至关重要
实现营养对精准健康的潜力。NPH计划的其他目标是“使用
人工智能将开发算法来预测个人对食物和饮食模式的反应,并验证
临床应用的算法”这需要将不同的因果途径结合在一起,以了解
它们相互作用。基于代理的模型(ABM)可以帮助并作为“虚拟实验室”来预测如何不同
人们可能会在不同的情况下对特定的饮食做出反应。因此,项目3的目标是:
精确营养虚拟人)是开发一个ABM工具,可以帮助更好地理解和
预测一个人对食物和饮食模式的反应,
基因、生理和行为因素之间的相互作用。然而,重点放在
单靠个人是不足以解决NPH的所有方面的问题的。虚拟公共卫生
精确营养实验室(项目4)将开发代表和说明
个人之外的系统,如他们的社会,经济和建筑环境。行政
和协调核心将监督所有业务和试点计划。数据系统核心(DSC)将
利用纽约市立大学、西点和国防部的大量计算资源,
一个灵活的基于云的架构,用于数据流和协作工作空间。计算系统
核心将提供资源和人员,以支持DSC和工具开发/部署。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Research gaps and opportunities in precision nutrition: an NIH workshop report
- DOI:10.1093/ajcn/nqac237
- 发表时间:2022-09-02
- 期刊:
- 影响因子:7.1
- 作者:Lee,Bruce Y.;Ordovas,Jose M.;Martinez,Marie F.
- 通讯作者:Martinez,Marie F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Y Lee其他文献
Bruce Y Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Y Lee', 18)}}的其他基金
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
- 批准号:
10549492 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
- 批准号:
10386497 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10552681 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10386502 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10552687 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10386501 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 129.75万 - 项目类别:
Research Grant