Statistics, Informatics & Qualitative Methods (SIQM) Core
统计学、信息学
基本信息
- 批准号:10555007
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaCensusesCharacteristicsClinicCollaborationsCommunitiesCommunity OutreachComplementConsultationsDataData AnalysesData CollectionData ScienceData SetData SourcesDependenceDevelopmentDiseaseDisparity populationElectronic Health RecordEnsureEnvironmentFeedsFosteringFundingFutureGoalsHealthHealth Care ResearchHealth InsuranceHealthcareHeterogeneityInformaticsInfrastructureInterviewLinkMaineMapsMeasuresMedical centerMethodologyMethodsModelingNatureNew EnglandNew HampshirePathway AnalysisPersonsPopulationQualitative MethodsReportingResearchResearch DesignResearch MethodologyResearch PersonnelResearch Project GrantsResearch SupportResourcesRuralRural CommunityRural HealthRural Health CentersRural PopulationSample SizeScienceScoring MethodServicesSocial NetworkSourceStatistical MethodsStatistical ModelsStructureSurveysSystemTimeVermontVisualizationWorkanalytical methodclinical carecommunity engagementdata infrastructuredata managementdata repositorydata visualizationdata warehousedesigndisease registrydiverse datahealth care deliveryhealth care serviceimprovedinnovationinsurance claimsinterestnovelpractice-based research networkprimary care practicerepositoryrural healthcarerural patientssocial health determinantsstatistics
项目摘要
PROJECT SUMMARY/ABSTRACT
Research Core: The Statistics, Informatics, and Qualitative Methods Core
The Statistics, Informatics, and Qualitative Methods (SIQM) Core will promote and support rural health care
delivery science. Following an integrated mixed-methods research framework and partnering with the
Community Engagement and Outreach (CEO) Core, we seek to optimize the rigor, context, and advancement
of research across the Center for Rural Health Care Delivery Science. The SIQM Core’s overarching goal is to
improve the rigor of the research on important rural health care topics by integrating quantitative and qualitative
data analyses into a two-way system where one feeds into the other. The specific areas of focus include
supporting the attainment and development of unique datasets, innovative statistical modeling, the construction
of accurate statistical inferences, the expansion of informatics and analytics, and the acuity and impact of data
visualization.
The Core will support the Center’s researchers by developing a robust research data warehouse that
responds to their research goals and dually aids in their development as researchers and ultimate graduation
to independent funding. The Core will work with datasets that incorporate health insurance claims, disease
registry, US Census, electronic health records, geospatial and other sources and forms of data. To
complement this, de novo data will be obtained from community stakeholders using surveys, interviews,
Community-Engagement Studios, and other forms of mixed-methods research. The data repository will grow
with time in breadth and depth to support community needs and priorities and support researchers by
expanding the scope of data, to which they will have access as they further their work and prepare their own
independent proposals. In addition to integrating and managing data, the SIQM Core will support projects by
developing and refining cutting-edge statistical methods, including hierarchical, longitudinal, and geospatial
modeling; causal inference methods to account for confounding in observational data (difference-in-difference
designs, propensity score methods); and social network analysis. The Core will create an environment across
the Center for identifying, sharing, and applying innovative statistical, geoinformatics, data science, and
qualitative methods to assist each Research Project Leader. Once established, the SIQM Core will coordinate
data and methods, share novel methodological solutions, and generalize these methods for future use.
项目摘要/摘要
研究核心:统计,信息学和定性方法核心
统计,信息学和定性方法(SIQM)核心将促进和支持粗糙的医疗保健
交付科学。遵循集成的混合方法研究框架,并与
社区参与和外展(CEO)核心,我们试图优化严格,背景和进步
农村卫生保健分娩中心的研究。 SIQM核心的总体目标是
通过整合定量和定性,改善有关重要粗糙医疗保健主题的严格研究
数据分析到一个双向系统中,一个系统将其输入另一个系统。重点的特定领域包括
支持独特数据集的尝试和开发,创新的统计建模,构造
准确的统计推断,信息和分析的扩展以及数据的敏锐和影响
可视化。
核心将通过开发强大的研究数据仓库来支持该中心的研究人员
回应他们的研究目标,并双重地帮助他们作为研究人员的发展和最终毕业
获得独立资金。核心将与包含健康保险索赔,疾病的数据集合作
注册表,美国人口普查,电子健康记录,地理空间以及其他资料和形式的数据。到
补充这一点,将使用调查,访谈,
社区参与工作室和其他形式的混合方法研究。数据存储库将增长
随着时间的广度和深度,以支持社区需求和优先事项,并支持研究人员
扩大数据范围,他们将在进一步的工作中可以访问并准备自己的工作范围
独立的建议。除了集成和管理数据外,SIQM核心还将支持项目
开发和完善尖端统计方法,包括等级,纵向和地理空间
造型;因果推理方法,以说明观察数据中的混杂(差异差异)
设计,承诺得分方法);和社交网络分析。核心将在跨越环境
识别,共享和应用创新统计,地球信息学,数据科学和数据的中心
为每个研究项目负责人提供帮助的定性方法。建立后,SIQM核心将协调
数据和方法,共享新颖的方法论解决方案,并概括这些方法以供将来使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alistair James O'MALLEY其他文献
Alistair James O'MALLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alistair James O'MALLEY', 18)}}的其他基金
Proximity to Food Establishments and BMI in the Framingham Heart Study
弗雷明汉心脏研究中与食品企业的接近程度和体重指数
- 批准号:
8776508 - 财政年份:2012
- 资助金额:
$ 38.44万 - 项目类别:
Proximity to Food Establishments and BMI in the Framingham Heart Study
弗雷明汉心脏研究中与食品企业的接近程度和体重指数
- 批准号:
8645427 - 财政年份:2012
- 资助金额:
$ 38.44万 - 项目类别:
Proximity to Food Establishments and BMI in the Framingham Heart Study
弗雷明汉心脏研究中与食品企业的接近程度和体重指数
- 批准号:
8292826 - 财政年份:2012
- 资助金额:
$ 38.44万 - 项目类别:
Accounting for confounding bias and heterogeneity in comparative effectiveness
考虑比较有效性中的混杂偏差和异质性
- 批准号:
8037453 - 财政年份:2010
- 资助金额:
$ 38.44万 - 项目类别:
相似国自然基金
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
- 批准号:72304011
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
面向有限监督信息的脑影像感兴趣区域分割及应用
- 批准号:62376123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
壳聚糖-没食子酸“共价牵手”协同焦磷酸盐“区域保护”调控肌原纤维蛋白凝胶特性的分子机制研究
- 批准号:32302110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双区域自然对流耦合模型的高效数值方法研究
- 批准号:12361077
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
典型中小城市区域暴雨积水动态过程集合量化智能解析研究
- 批准号:52379008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A place-based approach to geographic disparities in lung transplant
基于地点的肺移植地理差异方法
- 批准号:
10655779 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Scientific and Public Outreach of Cell Type Taxonomies (SPOCTT) Initiative
细胞类型分类学的科学和公众推广 (SPOCTT) 计划
- 批准号:
10724950 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Impact of cannabis legalization on prescription drug use and health outcomes in Connecticut
大麻合法化对康涅狄格州处方药使用和健康结果的影响
- 批准号:
10576002 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别: