Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
基本信息
- 批准号:10555202
- 负责人:
- 金额:$ 69.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyArchivesAutomobile DrivingBehaviorBehavioralBody partBrainCOVID-19ClinicalClinical ResearchCollaborationsCollectionCommunicable DiseasesComplexDataDatabasesDefectDepositionDevelopmentDiagnosisDiseaseEcho-Planar ImagingEnsureEnvironmental ExposureEnvironmental ImpactEyeFetusGestational AgeHeadHealthHumanImageImaging DeviceInterventionJointsLegLesionLifeLimb structureLocationMagnetic Resonance ImagingMeasuresMorphologic artifactsMotionMovementNervous System PhysiologyNetwork-basedNeural Network SimulationNeurologicOpioidOutcomeParaplegiaPathologyPerformancePhasePopulation StudyPositioning AttributePregnancyProspective StudiesProtocols documentationResolutionSamplingScanningSeriesSiteSliceSpecialized CenterSpinalSpinal DysraphismStratificationStructureSubstance abuse problemT2 weighted imagingTestingTimeTrainingTriageUpdateVertebral columnbrain abnormalitiesbrain magnetic resonance imagingbrain volumeclinically relevantcognitive functionconvolutional neural networkfetalfootimprovedmalformationmaternal obesitymotor deficitneonatal brainnervous system disordernovelpostnatalprospectivereconstructionresponsesexsuccesstooltreatment centerultrasound
项目摘要
PROJECT SUMMARY/ ABSTRACT
Our premise is that the fetal stage of human brain development is the most dynamic, the most vulnerable and
the most important for lifelong behavioral and cognitive function. As many neurological disorders have their
genesis in fetal life, there is a need to accurately quantify normal and abnormal fetal brain development from
both the perspective of fetal brain structure and body motion. Better imaging tools would enable us to explore
how fetal neurological disorders as well as environmental exposures, such as opioids, maternal obesity, or
COVID-19, impact early brain structure and body movements. Magnetic resonance imaging (MRI) T2-weighted,
single-shot fast-spin-echo (e.g. HASTE) images provide a unique window into this critical phase of structural
brain development, with the potential to detect subtle abnormalities. However, fetal brain MRI is challenging due
to fetal motion, which leads to image artifacts, double oblique acquisitions and incomplete brain coverage. As a
result, trained MR technologists must “chase the fetus” to amass the necessary images to diagnose the presence
or absence of lesions, resulting in long scan times and higher RF energy deposition. Thus, fetal brain MRI is
inefficient, limited to specialized centers, and diagnosis is still difficult because fetal motion results in each image
being an independent slice that cannot be referenced to another slice, making confirmation of suspicious findings
difficult. At the same time, fetal motion is an important measure of functional neurological integrity, informing
postnatal outcomes. However, current clinical MR and ultrasound assessments of fetal motion do not fully
capture the complex 3D motions of all body parts simultaneously. Better assessment of fetal neurological health
requires novel tools to automatically and efficiently obtain coherent, high quality HASTE fetal brain volumes and
to characterize 3D fetal whole-body motion. To address these unmet needs, we will leverage convolutional neural
network (CNN) models and propose the following aims: (1) Develop a self-driving engine for efficient acquisition
of high-quality HASTE fetal brain volumes and (2) Enable automated fetal whole-body motion tracking and
characterization. We will deploy the proposed tools in a prospective study that compares fetuses with Chiari II
malformation (spina bifida), a disorder known to have brain abnormalities and often associated with decreased
leg movement, to typical fetuses with the following aim: (3) Assess performance of the self-driving HASTE engine
and whole-body motion characterization in Chiari II vs typical fetuses. For Aims 1 and 2, we will include data
from collaborating sites and strategies for CNN generalization to increase robustness and potential to deploy our
tools to other scanners. The ability to automatically obtain high-quality coherent fetal brain volumes and
characterize fetal motion will improve stratification for fetal treatments and characterization of response to fetal
interventions. Success will also enable sites without fetal imaging experts to locally assess and triage fetuses
with suspected abnormalities to specialized treatment centers, as well as facilitate large population-based
studies to understand the impact of environmental influences on early brain development and fetal behavior.
项目总结/摘要
我们的前提是,胎儿阶段的人类大脑发育是最动态的,最脆弱的,
对终生的行为和认知功能最重要。正如许多神经系统疾病
在胎儿生命的起源,有必要准确地量化正常和异常的胎儿大脑发育,
胎儿大脑结构和身体运动的角度。更好的成像工具将使我们能够探索
胎儿神经系统疾病以及环境暴露,如阿片类药物,母亲肥胖,或
COVID-19影响早期大脑结构和身体运动。磁共振成像(MRI)T2加权,
单次快速自旋回波(如HASTE)图像提供了一个独特的窗口,进入这一关键阶段的结构
大脑发育,具有检测细微异常的潜力。然而,胎儿脑MRI具有挑战性,
胎儿运动,这导致图像伪影,双斜采集和不完整的大脑覆盖。作为
因此,受过训练的磁共振技术人员必须“追逐胎儿”,以收集必要的图像,以诊断胎儿的存在。
或没有损伤,导致扫描时间长和RF能量沉积更高。因此,胎儿脑MRI是
效率低,局限于专门的中心,诊断仍然很困难,因为每个图像都有胎儿运动的结果。
作为一个独立的切片,不能引用到另一个切片,确认可疑的发现
难与此同时,胎动是功能神经完整性的重要衡量标准,
产后结果。然而,目前的临床MR和超声评估胎儿运动并不完全,
同时捕捉所有身体部位的复杂3D运动。更好地评估胎儿神经系统健康
需要新的工具来自动和有效地获得连贯的、高质量的HASTE胎儿脑体积,
来表征3D胎儿全身运动。为了解决这些未满足的需求,我们将利用卷积神经网络,
网络(CNN)模型,并提出以下目标:(1)开发一个自动驾驶引擎,以实现有效的收购
高质量HASTE胎儿脑体积和(2)实现自动化胎儿全身运动跟踪,
特征化我们将在一项前瞻性研究中部署所提出的工具,比较胎儿与基亚里II型
畸形(脊柱裂),一种已知具有大脑异常的疾病,通常与减少
腿部运动,以典型的胎儿,具有以下目的:(3)评估自动驾驶HASTE引擎的性能
基亚里II与典型胎儿的全身运动特征。对于目标1和2,我们将包括数据
从合作网站和CNN推广战略,以增加鲁棒性和潜力,部署我们的
其他扫描仪的工具。自动获得高质量连贯胎儿脑体积的能力,
表征胎动将改善胎儿治疗的分层和对胎儿反应的表征
干预措施。成功也将使没有胎儿成像专家的网站在当地评估和分类胎儿
将疑似异常的患者送到专门的治疗中心,并促进基于大量人群的
研究了解环境影响对早期大脑发育和胎儿行为的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELFAR ADALSTEINSSON其他文献
ELFAR ADALSTEINSSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELFAR ADALSTEINSSON', 18)}}的其他基金
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10390574 - 财政年份:2022
- 资助金额:
$ 69.08万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10397424 - 财政年份:2019
- 资助金额:
$ 69.08万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10619529 - 财政年份:2019
- 资助金额:
$ 69.08万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10004704 - 财政年份:2019
- 资助金额:
$ 69.08万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10163065 - 财政年份:2019
- 资助金额:
$ 69.08万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Research Grant