Advanced Fetal Imaging
先进的胎儿成像
基本信息
- 批准号:8696352
- 负责人:
- 金额:$ 128.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAccelerationAddressAnatomyBirthBrainBrain imagingCerebrumCognitiveComputer softwareContrast MediaCounselingCustomDOTMADetectionDevelopmentDiagnosticDiffusionDiseaseEnsureEvaluationFeedbackFetal DevelopmentFetal MovementFetusFutureGoalsGrowth and Development functionHeadHeatingHereditary DiseaseHypoplastic Left Heart SyndromeImageImaging PhantomsImpaired cognitionInterventionLeadLifeMagnetic Resonance ImagingMeasurementMedicalMethodsMotionNeonatalNeuronsOperative Surgical ProceduresParentsPatient currently pregnantPerformancePerfusionPersonsPhasePhysiologic pulsePhysiologicalPhysiologyPositioning AttributePostnatal CareProcessProtocols documentationPublic HealthResolutionRoleSafetySpectrum AnalysisSpeedStructureTechniquesTemperatureTestingTimeTissuesTranslatingTransposition of Great VesselsValidationcongenital heart disorderdesigndisease diagnosisdisorder controlelectrical propertyfetalfetal medicinefollow-upimaging modalityimprovedin uteroin vivomeetingsmotion sensitivitymyelinationneuroimagingoptimismoutcome forecastpost interventionpostnatalpregnantpreventprospectivepublic health relevanceresearch studyresponsescreeningsynaptogenesistooltransmission process
项目摘要
DESCRIPTION (provided by applicant): The fetal period is a time of unparalleled brain growth and development and is arguably the most important time for defining future cognitive potential. Therefore, when fetal brain development is impaired, as it is in many disorders including congenital heart disease (CHD), abnormalities emerge in utero and contribute to lifelong cognitive impairment that cannot be corrected even with optimal postnatal care. This has led to an overwhelming public health need for methods that detect early in utero anatomical and physiological abnormalities to better counsel parents and to better guide development and optimization of fetal interventions (surgical or medical) to prevent or mitigate such long-term consequences. Although there has been ongoing optimism that fetal MRI could fulfill this role, it still remains severely limited by the unique anatomy of the gravid abdomen, the small size of the fetus and, most importantly, fetal motion. As a result, fetal brain MRI lags far behind postnatal brain imaging. In fact, fetal brain MR evaluations remain primarily limited to fast single-shot T2 sequences that have inherently poor brain contrast with spectroscopy, diffusion and perfusion unreliable or impossible with the current methods. Thus, the potential of fetal MRI to provide robust and accurate structural and physiological assessments remains unrealized. We propose to advance fetal MRI using an integrated approach that addresses the entire imaging acquisition process from hardware to pulse sequence design with the following aims: Aim 1. Develop MR Hardware and Anatomical Acquisition Methods. We propose to develop the first anthropomorphic fetal MRI phantom to safely test the feasibility of our developments and ensure SAR safety. We will build the first 128-channel receive phased array for the pregnant abdomen to facilitate image acceleration and improve SNR. We will build on the emerging field of parallel transmission (pTx), and be the first to apply it to fetal imaging with the goal of exciting only th region of the fetal head to minimize SAR, enable further acceleration, and provide a target for prospective motion navigation. Additional speed on the image acquisition will be gained with the development of compressed sensing (CS) techniques for fetal imaging. These improvements will enable improved anatomical images (TSE and MPRAGE); Aim 2. Develop Physiological Acquisition Methods. Use advances in Aim 1 to develop robust diffusion, spectroscopy and perfusion imaging; and Aim 3. Translate to In Vivo Fetal Brain MRI assessment in Congenital Heart Disease. We will assess the ability or our advances to better detect structural and physiological brain abnormalities in CHD compared to current fetal MRI in the same subjects and compared to the advanced protocol in normal controls. In addition we will attempt to detect physiological changes after fetal interventions in hypoplastic left heart syndrome (HLHS). In summary, our goal is to transform the field of fetal MRI by developing and employing state-of-the-art advances on the acquisition end of the fetal MRI experiment to meet the growing demand for more information as fetal interventions emerge.
描述(由申请人提供):胎儿期是一个无与伦比的大脑生长和发育的时期,可以说是定义未来认知潜力的最重要时期。因此,当胎儿大脑发育受损时,就像在许多疾病中一样,包括先天性心脏病(CHD),异常出现在子宫内,并导致终身认知障碍,即使有最佳的产后护理也无法纠正。这导致了对检测子宫内早期解剖学和生理学异常的方法的压倒性的公共卫生需求,以更好地为父母提供咨询,并更好地指导胎儿干预(手术或医疗)的开发和优化,以预防或减轻这种长期后果。尽管胎儿MRI可以发挥这一作用的乐观态度一直存在,但它仍然受到妊娠腹部独特解剖结构、胎儿体积小以及最重要的胎儿运动的严重限制。因此,胎儿脑MRI远远落后于出生后的脑成像。事实上,胎儿脑MR评价仍然主要限于快速单次激发T2序列,其具有固有的与光谱学、扩散和灌注不可靠或不可能的现有方法的差的脑对比度。因此,胎儿MRI提供稳健和准确的结构和生理评估的潜力仍未实现。我们建议使用一种集成方法来推进胎儿MRI,该方法解决了从硬件到脉冲序列设计的整个成像采集过程,其目标如下:目标1。开发MR硬件和解剖采集方法。我们建议开发第一个拟人胎儿MRI体模,以安全地测试我们的发展的可行性,并确保SAR安全。我们将为孕妇腹部建立第一个128通道接收相控阵,以促进图像加速和提高信噪比。我们将建立在并行传输(pTx)的新兴领域,并成为第一个将其应用于胎儿成像的目标是只激发胎儿头部的th区域,以最大限度地减少SAR,使进一步加速,并提供前瞻性运动导航的目标。随着用于胎儿成像的压缩传感(CS)技术的发展,将获得额外的图像采集速度。这些改进将能够改善解剖图像(TSE和MPTEE);目标2。开发生理学采集方法。利用目标1中的进展开发强大的扩散、光谱和灌注成像;目标3。翻译为先天性心脏病的体内胎脑MRI评估。我们将评估我们的能力或进步,以更好地检测结构和生理大脑异常的CHD相比,目前的胎儿MRI在相同的主题,并与先进的协议在正常对照组。此外,我们将尝试检测胎儿介入治疗左心发育不全综合征(HLHS)后的生理变化。总之,我们的目标是通过开发和采用胎儿MRI实验采集端的最新进展来改变胎儿MRI领域,以满足随着胎儿干预措施的出现而对更多信息日益增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELFAR ADALSTEINSSON其他文献
ELFAR ADALSTEINSSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELFAR ADALSTEINSSON', 18)}}的其他基金
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10390574 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
Fetal MRI: robust self-driving brain acquisition and body movement quantification
胎儿 MRI:强大的自动驾驶大脑采集和身体运动量化
- 批准号:
10555202 - 财政年份:2022
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10397424 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10619529 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10004704 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
Novel MRI Assessment of Placental Structure and Function Throughout Pregnancy
妊娠期胎盘结构和功能的新型 MRI 评估
- 批准号:
10163065 - 财政年份:2019
- 资助金额:
$ 128.3万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 128.3万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 128.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)