Circuit mechanisms of self-organized cognitive strategies
自组织认知策略的回路机制
基本信息
- 批准号:10554344
- 负责人:
- 金额:$ 46.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-05 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAreaArtificial IntelligenceBasal GangliaBehaviorBindingBiteBrainCodeCognitionCognition DisordersCognitiveCognitive deficitsComplexComputer ModelsCorpus striatum structureCouplingCreativenessDataDiseaseExpert SystemsFrequenciesFunctional disorderGoalsGroupingHumanImpairmentInterventionLaboratoriesLearningLocationMacacaMacaca mulattaMeasuresMediatingMemoryMemory impairmentMental disordersMethodsMindMonkeysMotorNeuronsPatientsPerformancePeriodicityPlayPopulationPrefrontal CortexPrimatesProblem SolvingProcessPsychologyRecurrenceResearchResourcesRoleSchizophreniaShapesShort-Term MemoryShorthandSignal TransductionSiteSocial Security NumberStimulusStructureSynapsesSystemSystematic BiasTelephoneTestingTimeVisualWorkbehavior testbiological systemscognitive abilitycognitive enhancementcognitive functioncognitive taskcostdensityexperimental studyflexibilityimprovedinformation organizationinnovationinsightlanguage comprehensionmembermicrostimulationneuralneuromechanismneurophysiologyneuroregulationnonhuman primatenovelnovel strategiesself organizationtool
项目摘要
Project Summary
Decades of psychology research have shown that working memory is limited, and humans can only hold a few
items in mind at the same time. However, cognitive tasks like planning and problem solving require access to
many pieces of information at once. To overcome this constraint, we enlist mnemonic strategies, for instance
grouping pieces of information into chunks, as we commonly do to remember telephone or social security
numbers. Mnemonic chunking allows us to flexibly organize information on line, providing a fundamental
building block for advanced cognitive abilities. Chunking impairments occur when damage or dysfunction
involves the dorsolateral prefrontal cortex (dlPFC), for instance in patients with schizophrenia, and severely
compromises overall cognitive function. Thus, determining how the brain organizes information is a necessary
step toward understanding the mechanisms of advanced cognition, and how these go awry in disease states.
A key challenge is that strategies for organizing information are self-generated and highly variable in a
laboratory setting. A central innovation of this proposal is the novel computational approach used to identify
spontaneous mnemonic chunking in macaque monkeys. This is critical because animal models allow us to
interrogate brain function with advanced neurophysiological tools. Here, we will use high-density, multi-site
recording and targeted neuromodulation to understand the circuit mechanisms that chunk mnemonic
information. Previous theoretical work suggests that chunks arise from compressed working memory
representations that act as neural shorthand, economizing on processing resources at the cost of degrading
some original information. Neurons in dlPFC encode items in working memory, and their dynamics are shaped
by recurrent interactions with the basal ganglia. Thus, we hypothesize that corticostriatal interactions promote
the efficient reorganization of working memory that underlies chunking. To test this we will investigate dlPFC-
striatal dynamics when monkeys spontaneously chunk information in a self-organized working memory task.
We will record large numbers of single neurons and local field potentials, and dynamically decode
representations held in working memory to assess how mnemonic codes and corticostriatal interactions
change when items are or are not chunked. In addition, exogenous stimulation will test the causal role of
striatal circuits in promoting the formation of mnemonic chunks. Together, these experiments will determine
how the brain establishes mnemonic chunks to optimize working memory performance. This will shed light on
a fundamental feature of advanced cognition, and how dysfunction in these mechanisms could give rise to
disorders of thought and memory. Finally, understanding mechanisms that optimize cognitive function in a
biological system may fuel creative advances that optimize performance in artificial intelligence systems.
项目概要
几十年的心理学研究表明,工作记忆是有限的,人类只能记住几个
同时记住的项目。然而,诸如计划和解决问题之类的认知任务需要访问
一次获得许多信息。为了克服这个限制,我们采用助记策略,例如
将信息分成大块,就像我们通常记住电话或社会保险一样
数字。助记词分块使我们能够灵活地在线组织信息,为我们提供了基础
高级认知能力的基石。当损坏或功能障碍时就会发生组块损伤
涉及背外侧前额皮质(dlPFC),例如精神分裂症患者,并且严重
损害整体认知功能。因此,确定大脑如何组织信息是必要的
朝着理解高级认知机制以及这些机制在疾病状态下如何出错的方向迈出了一步。
一个关键的挑战是,组织信息的策略是自我生成的,并且在不同的环境中变化很大。
实验室设置。该提案的一个核心创新是用于识别的新颖计算方法
猕猴的自发记忆组块。这很重要,因为动物模型使我们能够
使用先进的神经生理学工具询问大脑功能。在这里,我们将使用高密度、多站点
记录和有针对性的神经调节,以了解记忆组块的电路机制
信息。先前的理论工作表明,块来自压缩的工作记忆
作为神经速记的表示,以降级为代价节省处理资源
一些原始信息。 dlPFC 中的神经元对工作记忆中的项目进行编码,并且它们的动态被塑造
通过与基底神经节的反复相互作用。因此,我们假设皮质纹状体相互作用促进
工作记忆的有效重组是分块的基础。为了测试这一点,我们将研究 dlPFC-
当猴子在自组织工作记忆任务中自发地组织信息时,纹状体动力学。
我们将记录大量的单个神经元和局部场电位,并动态解码
工作记忆中保存的表征,用于评估助记码和皮质纹状体如何相互作用
当项目被分块或不被分块时会发生变化。此外,外源刺激将测试因果作用
纹状体回路促进记忆块的形成。这些实验将共同决定
大脑如何建立助记块来优化工作记忆性能。这将揭示
高级认知的基本特征,以及这些机制的功能障碍如何导致
思维和记忆障碍。最后,了解优化认知功能的机制
生物系统可能会推动创新进步,从而优化人工智能系统的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin L Rich其他文献
Erin L Rich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin L Rich', 18)}}的其他基金
Mesoscale dynamics underlying expectation bias in the orbitofrontal cortex
眶额皮层期望偏差的中尺度动力学
- 批准号:
10571994 - 财政年份:2022
- 资助金额:
$ 46.91万 - 项目类别:
Circuit mechanisms of self-organized cognitive strategies
自组织认知策略的回路机制
- 批准号:
10337212 - 财政年份:2020
- 资助金额:
$ 46.91万 - 项目类别:
Multi-scale Orbitofrontal Networks Underlying Reward Processing
奖励处理背后的多尺度眶额网络
- 批准号:
8868828 - 财政年份:2015
- 资助金额:
$ 46.91万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7488004 - 财政年份:2006
- 资助金额:
$ 46.91万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7388263 - 财政年份:2006
- 资助金额:
$ 46.91万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7112521 - 财政年份:2006
- 资助金额:
$ 46.91万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 46.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




