Mechanisms of multi-attribute decision-making
多属性决策机制
基本信息
- 批准号:10774849
- 负责人:
- 金额:$ 74.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnxietyArbitrationAreaAttentionBehaviorBehavioral ParadigmBiologicalBrainChoice BehaviorCodeColorComplexComputer AnalysisComputer ModelsDecision MakingDiffusionDimensionsDiseaseGoalsHuman CharacteristicsIndividualLinkMacaca mulattaMapsMeasuresMediatingMental DepressionMental disordersModelingMonkeysNeuronsNeurosciencesOutcomePopulationPopulation AnalysisPopulation DynamicsProbabilityProcessPsychopathologyReportingRewardsRiskSignal TransductionStructureSuggestionTestingVisualVisual attentionWeightattentional biasattentional modulationcostfallsfrontal eye fieldsgazeinformation modelinformation processinginsightmultimodalityneuralneural circuitneuroeconomicsneuromechanismnonhuman primatenovelpredictive modelingresponsetemporal measurementtheories
项目摘要
When making a complex decision, we often consider multiple dimensions, such as costs and qualities, that vary
among choice options. Evaluating important attributes of a given option is critical for optimal choice behavior,
and poor decision-making can result from an inability to properly weigh attributes, as is commonly observed in
psychiatric disorders. These deficits are accompanied by alterations in the structure and function of the
orbitofrontal cortex (OFC), an area critical for value-based decision-making. However, the underlying neural
mechanisms and how they are disrupted remain unclear, and this limits our ability to map decision-making
deficits to neural computation. The long-term goal of this proposal is to understand how the brain uses
information to make optimal decisions, and our specific objective is to develop a comprehensive model of
information processing in OFC during multi-attribute choices. To do this, we will use a multi-modal approach to
evaluate different frameworks of decision formation. A neuroeconomics view posits that the values of different
attributes are combined to compute an overall, or integrated value, and comparisons are made in the space of
these option values. In contrast, other evidence suggests that direct competition between attributes, perhaps
mediated by visual attention, is an important part of the decision process. Arbitrating between these models is
critical to advancing theoretical frameworks that can link decision-making deficits to disordered neural
computations, but a key challenge is that the steps of decision formation occur rapidly and internally, making
them difficult to observe or otherwise measure. Here, we address this by combining a novel multi-attribute choice
task with large-scale neural recording and population analyses necessary to reveal within-trial dynamics of
otherwise covert decision-making processes. In Aim 1, we will assess how OFC codes individual attributes during
multi-attribute decisions, and how this relates to classically reported integrated value signals. Next, we will
assess how attention to attributes alters OFC coding, value computation, and subsequent decisions (Aim 2).
Finally, in Aim 3, we propose a novel computational model of multi-attribute decisions that can determine the
extent to which choices are driven by the relative values of attributes versus integrated options. Our model will
also reveal latent variables that evolve during decision formation, which we will map on to neural responses. In
doing so, we aim to localize specific choice processes to unique neural circuits, and also demonstrate the
biological relevance of the model and its conclusions. Together, these studies leverage our combined expertise
in non-human primate behavior, computational analysis, and modeling to define the neural underpinnings of
multi-attribute choice in OFC. If successful, our results will not only refine the theoretical frameworks that guide
decision neuroscience, but will also shed light on neural processes that underlie decision-making deficits
characteristic of human psychiatric disorders.
在做一个复杂的决策时,我们通常会考虑多个维度,比如成本和质量,这些维度各不相同
在众多选择中。评估给定选项的重要属性对于最优选择行为至关重要,
而糟糕的决策可能是由于无法正确权衡属性造成的,正如在
精神疾病这些缺陷伴随着结构和功能的改变,
眶额皮质(OFC),一个对基于价值的决策至关重要的区域。然而,潜在的神经
机制以及它们是如何被破坏的仍然不清楚,这限制了我们绘制决策图的能力
神经计算的缺陷这项提案的长期目标是了解大脑如何使用
信息做出最佳决策,我们的具体目标是开发一个全面的模型,
多属性选择过程中OFC的信息处理。为此,我们将使用多模式方法,
评估不同的决策形成框架。神经经济学的观点认为,
属性被组合以计算总体或综合值,并在以下空间中进行比较:
这些选项值。相反,其他证据表明,属性之间的直接竞争,也许
由视觉注意力介导,是决策过程的重要组成部分。在这些模型之间进行仲裁是
对于推进可以将决策缺陷与神经紊乱联系起来的理论框架至关重要。
计算,但一个关键的挑战是,决策形成的步骤发生迅速和内部,
它们难以观察或测量。在这里,我们通过结合一种新颖的多属性选择来解决这个问题。
任务与大规模的神经记录和人口分析,必要的,以揭示试验内动态
否则就是隐蔽的决策过程。在目标1中,我们将评估OFC如何对单个属性进行编码,
多属性决策,以及这与传统报告的综合价值信号的关系。接下来我们就
评估对属性的关注如何改变OFC编码、价值计算和后续决策(目标2)。
最后,在目标3中,我们提出了一种新的多属性决策计算模型,可以确定
选择在多大程度上是由属性相对于综合选项的相对价值驱动的。我们的模型将
还揭示了在决策形成过程中演变的潜在变量,我们将映射到神经反应。在
这样做,我们的目标是将特定的选择过程定位到独特的神经回路中,并证明
模型的生物相关性及其结论。总之,这些研究利用了我们的综合专业知识
在非人类灵长类动物的行为,计算分析和建模,以确定神经基础的
OFC中的多属性选择如果成功,我们的结果不仅将完善指导的理论框架
决策神经科学,但也将揭示神经过程的基础决策缺陷
人类精神疾病的特征
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin L Rich其他文献
Erin L Rich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin L Rich', 18)}}的其他基金
Mesoscale dynamics underlying expectation bias in the orbitofrontal cortex
眶额皮层期望偏差的中尺度动力学
- 批准号:
10571994 - 财政年份:2022
- 资助金额:
$ 74.18万 - 项目类别:
Circuit mechanisms of self-organized cognitive strategies
自组织认知策略的回路机制
- 批准号:
10554344 - 财政年份:2020
- 资助金额:
$ 74.18万 - 项目类别:
Circuit mechanisms of self-organized cognitive strategies
自组织认知策略的回路机制
- 批准号:
10337212 - 财政年份:2020
- 资助金额:
$ 74.18万 - 项目类别:
Multi-scale Orbitofrontal Networks Underlying Reward Processing
奖励处理背后的多尺度眶额网络
- 批准号:
8868828 - 财政年份:2015
- 资助金额:
$ 74.18万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7488004 - 财政年份:2006
- 资助金额:
$ 74.18万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7388263 - 财政年份:2006
- 资助金额:
$ 74.18万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7112521 - 财政年份:2006
- 资助金额:
$ 74.18万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 74.18万 - 项目类别:
Collaborative R&D
Application name Phase Space - VR hypnotherapy as early intervention for anxiety in students and young people
应用程序名称 Phase Space - VR 催眠疗法作为学生和年轻人焦虑的早期干预
- 批准号:
10055011 - 财政年份:2023
- 资助金额:
$ 74.18万 - 项目类别:
Collaborative R&D