Molecular and circuit defects underlying different SCN2A mutations and ASDs

不同 SCN2A 突变和自闭症谱系障碍 (ASD) 背后的分子和电路缺陷

基本信息

  • 批准号:
    10596085
  • 负责人:
  • 金额:
    $ 64.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-07 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT The recent wave of whole exome sequencing studies places SCN2A, which encodes the neuronal voltage- gated Na+ channel pore-forming α subunit NaV1.2, near top of the list of genetic loci linked to autism spectrum disorders (ASDs). On the one hand, that NaV1.2 is an essential Na+ channel responsible for initiating action potentials within excitatory neurons in the developing brain provides a rationale for the prominence of SCN2A. On the other, most SCN2A mutations associated with ASDs are loss-of-function and predicted to decrease neuronal excitability, an outcome that would lower the neocortical excitation/inhibition (E/I) balance and thus contrast with the generally accepted model that behavior defects in ASDs, such as social dysfunction, result from an increased E/I balance. This conundrum persists because of the absence of Scn2a mouse models that reveal ASD-associated endophenotypes, thus limiting our ability to dissect the cellular electrophysiological defects associated with Scn2a loss-of-function mutations and the consequent circuit level dysfunctions that lead to ASD-associated behaviors. Building on x-ray crystal structures of key regulatory components of NaV1.2 that we solved and analyzed during the previous funding period, we obtained specific insights into how ASD- associated mutations in NaV1.2 perturb channel function and alter E/I balance. Further, we generated two novel Scn2a mouse models by CRISPR/Cas9 to test the specific contribution of Scn2a mutations in vivo. Initial analyses of these models reveal abnormal Na+ channel function, decreased cortical neuron excitability, and dysfunctional behaviors consistent with ASDs, while simultaneously demonstrating informative differences between the two models. These models provide a unique set of tools that will allow us to trace abnormal channel function through altered neuronal electrical activity to the consequent circuit-level dysfunction and the resulting ASD endophenotypes. We propose to exploit these novel Scn2a mutant models for the following Aims: 1) We will obtain detailed information about their neuronal electrophysiological characteristics and synaptic properties, thereby defining how Scn2a mutations perturb neuronal function. 2) We will employ fiber photometry and chemogenetic tools (DREADDs) to test whether the Scn2a mutations decrease excitatory drive to the basolateral amygdala and thereby produce the social dysfunction and impaired danger detection observed in our Scn2a mouse models. 3) We will exploit our initial electrophysiological findings to test a potential therapeutic strategy in which we aim to counteract the reduced Na+ current associated with ASD-associated SCN2A loss-of-function mutations. Our overall goals are to define the range of cellular dysfunction that results from Scn2a mutations and trace those abnormalities through the circuit level to behavioral manifestations.
ABSTRACT The recent wave of whole exome sequencing studies places SCN2A, which encodes the neuronal voltage- gated Na+ channel pore-forming α subunit NaV1.2, near top of the list of genetic loci linked to autism spectrum disorders (ASDs). On the one hand, that NaV1.2 is an essential Na+ channel responsible for initiating action potentials within excitatory neurons in the developing brain provides a rationale for the prominence of SCN2A. On the other, most SCN2A mutations associated with ASDs are loss-of-function and predicted to decrease neuronal excitability, an outcome that would lower the neocortical excitation/inhibition (E/I) balance and thus contrast with the generally accepted model that behavior defects in ASDs, such as social dysfunction, result from an increased E/I balance. This conundrum persists because of the absence of Scn2a mouse models that reveal ASD-associated endophenotypes, thus limiting our ability to dissect the cellular electrophysiological defects associated with Scn2a loss-of-function mutations and the consequent circuit level dysfunctions that lead to ASD-associated behaviors. Building on x-ray crystal structures of key regulatory components of NaV1.2 that we solved and analyzed during the previous funding period, we obtained specific insights into how ASD- associated mutations in NaV1.2 perturb channel function and alter E/I balance. Further, we generated two novel Scn2a mouse models by CRISPR/Cas9 to test the specific contribution of Scn2a mutations in vivo. Initial analyses of these models reveal abnormal Na+ channel function, decreased cortical neuron excitability, and dysfunctional behaviors consistent with ASDs, while simultaneously demonstrating informative differences between the two models. These models provide a unique set of tools that will allow us to trace abnormal channel function through altered neuronal electrical activity to the consequent circuit-level dysfunction and the resulting ASD endophenotypes. We propose to exploit these novel Scn2a mutant models for the following Aims: 1) We will obtain detailed information about their neuronal electrophysiological characteristics and synaptic properties, thereby defining how Scn2a mutations perturb neuronal function. 2) We will employ fiber photometry and chemogenetic tools (DREADDs) to test whether the Scn2a mutations decrease excitatory drive to the basolateral amygdala and thereby produce the social dysfunction and impaired danger detection observed in our Scn2a mouse models. 3) We will exploit our initial electrophysiological findings to test a potential therapeutic strategy in which we aim to counteract the reduced Na+ current associated with ASD-associated SCN2A loss-of-function mutations. Our overall goals are to define the range of cellular dysfunction that results from Scn2a mutations and trace those abnormalities through the circuit level to behavioral manifestations.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development.
  • DOI:
    10.1080/19336950.2023.2176984
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Baker, Madelyn R.;Lee, Andrew D. S.;Rajadhyaksha, Anjali M.
  • 通讯作者:
    Rajadhyaksha, Anjali M.
Scn2a severe hypomorphic mutation decreases excitatory synaptic input and causes autism-associated behaviors.
  • DOI:
    10.1172/jci.insight.150698
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Wang HG;Bavley CC;Li A;Jones RM;Hackett J;Bayleyen Y;Lee FS;Rajadhyaksha AM;Pitt GS
  • 通讯作者:
    Pitt GS
Direct Observation of Compartment-Specific Localization and Dynamics of Voltage-Gated Sodium Channels.
  • DOI:
    10.1523/jneurosci.0086-22.2022
  • 发表时间:
    2022-07-13
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Liu, Hui;Wang, Hong-Gang;Pitt, Geoffrey;Liu, Zhe
  • 通讯作者:
    Liu, Zhe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geoffrey S Pitt其他文献

Geoffrey S Pitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geoffrey S Pitt', 18)}}的其他基金

Multidisciplinary Research Training in Cardiovascular Disease
心血管疾病多学科研究培训
  • 批准号:
    10495005
  • 财政年份:
    2022
  • 资助金额:
    $ 64.34万
  • 项目类别:
Multidisciplinary Research Training in Cardiovascular Disease
心血管疾病多学科研究培训
  • 批准号:
    10656528
  • 财政年份:
    2022
  • 资助金额:
    $ 64.34万
  • 项目类别:
Investigating the role of CaV1.2 in aortic valve stenosis
研究 CaV1.2 在主动脉瓣狭窄中的作用
  • 批准号:
    10421276
  • 财政年份:
    2020
  • 资助金额:
    $ 64.34万
  • 项目类别:
Investigating the role of CaV1.2 in aortic valve stenosis
研究 CaV1.2 在主动脉瓣狭窄中的作用
  • 批准号:
    10132390
  • 财政年份:
    2020
  • 资助金额:
    $ 64.34万
  • 项目类别:
Investigating the role of CaV1.2 in aortic valve stenosis
研究 CaV1.2 在主动脉瓣狭窄中的作用
  • 批准号:
    10611495
  • 财政年份:
    2020
  • 资助金额:
    $ 64.34万
  • 项目类别:
Molecular and circuit defects underlying different SCN2A mutations and ASDs
不同 SCN2A 突变和自闭症谱系障碍 (ASD) 背后的分子和电路缺陷
  • 批准号:
    10362623
  • 财政年份:
    2019
  • 资助金额:
    $ 64.34万
  • 项目类别:
Investigation of the roles for CaV1.2 in non-excitable tissue during development
研究 CaV1.2 在发育过程中非兴奋组织中的作用
  • 批准号:
    9348666
  • 财政年份:
    2016
  • 资助金额:
    $ 64.34万
  • 项目类别:
Investigation of the roles for CaV1.2 in non-excitable tissue during development
研究 CaV1.2 在发育过程中非兴奋组织中的作用
  • 批准号:
    10011883
  • 财政年份:
    2016
  • 资助金额:
    $ 64.34万
  • 项目类别:
Structural studies of NaV1.5 and functional implications
NaV1.5 的结构研究和功能意义
  • 批准号:
    8685317
  • 财政年份:
    2013
  • 资助金额:
    $ 64.34万
  • 项目类别:
Structural studies of NaV1.5 and functional implications.
NaV1.5 的结构研究和功能意义。
  • 批准号:
    9443872
  • 财政年份:
    2013
  • 资助金额:
    $ 64.34万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 64.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了