Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
基本信息
- 批准号:10595510
- 负责人:
- 金额:$ 62.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease riskBiologicalBiological ModelsBiotechnologyCommunitiesComplexComputer softwareComputing MethodologiesDataData AnalysesDevelopmentDiseaseDocumentationEarly DiagnosisEnvironmentEquationEtiologyGene ExpressionGenesGenetic DiseasesGenomicsGenotypeGraphInterventionInvestigationLeast-Squares AnalysisLipidsLiteratureMendelian randomizationMethodologyMethodsModelingNeurodegenerative DisordersPathway interactionsPreventionProcessPublic DomainsPythonsRegulator GenesRegulatory PathwayResearchResearch PersonnelRisk FactorsRoleSample SizeSchemeSingle Nucleotide PolymorphismStatistical ComputingStatistical MethodsTestingUncertaintyWritingcausal variantcomputerized toolsdeep neural networkgene regulatory networkgenetic variantgenome wide association studygenome-widehigh dimensionalityinnovationinstrumentinterestmultidimensional dataneuralnovelphenotypic datapleiotropismpower analysisprogramsreconstructionsoftware developmenttheoriestherapeutic developmenttooltraittranscriptometreatment strategyweb site
项目摘要
Summary
As biotechnology advances, biomedical investigations have become more complex due to high-throughput and
high-dimensional data collected at a genomic scale. Of paramount importance is unraveling the regulatory roles
of genetic variants on genes and gene-to-gene regulatory relationships. On this ground, biomedical researchers
can identify causal Single-Nucleotide Polymorphisms (SNPs) and genes for complex traits and neurodegenerative
diseases such as Alzheimer's disease (AD) to develop treatment strategies. Given the urgent need to under-
stand the progression and etiology of these diseases, particularly AD, the PIs propose to develop statistical and
computational tools for accurate estimation and inference of gene regulatory networks, with a focus on AD and
other complex traits.
The project consists of two major components: estimation and inference of gene regulatory networks with
SNPs as instrumental variables (IVs). The main thrust will be on causal network reconstruction and inference
with IVs as interventions in the possible presence of invalid IVs and hidden confounders, with particular effort
on high-dimensional data, in which the number of variables may exceed the sample size. Concerning causal
network reconstruction, the project will develop novel methods of reconstructing gene regulatory networks as
directed acyclic graphs describing casual relationships among the SNPs (interventions), genes, and traits such
as AD. The project will develop high-dimensional inferential tools based on modified likelihood ratio tests and a
data perturbation scheme to account for the uncertainty involved in a discovery process. Moreover, it will focus
on hypothesis testing on (1) the directionality and strength of multiple (linear/nonlinear) causal relations and (2)
the presence of a pathway of causal relations. Computationally, the project will develop innovative methods and
algorithms for large-scale problems. For application, based on the reconstructed gene regulatory networks, we
will first identify causal genes for AD and AD's risk factors, such as lipids, then infer which of the risk factors are
(putatively) causal to AD.
概括
随着生物技术的进步,生物医学研究由于高通量和高通量而变得更加复杂。
在基因组规模收集的高维数据。最重要的是阐明监管角色
基因的遗传变异和基因间的调控关系。基于此,生物医学研究人员
可以识别复杂性状和神经退行性疾病的因果单核苷酸多态性 (SNP) 和基因
阿尔茨海默病 (AD) 等疾病制定治疗策略。鉴于迫切需要
由于了解这些疾病(特别是 AD)的进展和病因,PI 建议制定统计和
用于准确估计和推断基因调控网络的计算工具,重点关注 AD 和
其他复杂的特征。
该项目由两个主要部分组成:基因调控网络的估计和推断
SNP 作为工具变量 (IV)。主要重点是因果网络重建和推理
将 IV 作为可能存在无效 IV 和隐藏混杂因素的干预措施,并特别努力
对于高维数据,其中变量的数量可能超过样本量。关于因果关系
网络重建,该项目将开发重建基因调控网络的新方法
有向无环图描述 SNP(干预措施)、基因和性状之间的因果关系
作为广告。该项目将开发基于修正似然比检验和
数据扰动方案来解释发现过程中涉及的不确定性。此外,还将重点
对 (1) 多重(线性/非线性)因果关系的方向性和强度以及 (2) 进行假设检验
因果关系路径的存在。在计算方面,该项目将开发创新方法和
大规模问题的算法。对于应用,基于重建的基因调控网络,我们
首先会识别 AD 的致病基因和 AD 的危险因素(例如血脂),然后推断哪些危险因素是
(推定)AD 的因果关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Pan其他文献
Wei Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Pan', 18)}}的其他基金
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 62.36万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10267373 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10483117 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10358645 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Integrating Alzheimer's disease GWAS with proteomic and metabolomic QTL data
将阿尔茨海默病 GWAS 与蛋白质组学和代谢组学 QTL 数据整合
- 批准号:
10018279 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10647797 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10561609 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10088703 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10116249 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10267714 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:














{{item.name}}会员




