Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
基本信息
- 批准号:10595510
- 负责人:
- 金额:$ 62.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease riskBiologicalBiological ModelsBiotechnologyCommunitiesComplexComputer softwareComputing MethodologiesDataData AnalysesDevelopmentDiseaseDocumentationEarly DiagnosisEnvironmentEquationEtiologyGene ExpressionGenesGenetic DiseasesGenomicsGenotypeGraphInterventionInvestigationLeast-Squares AnalysisLipidsLiteratureMendelian randomizationMethodologyMethodsModelingNeurodegenerative DisordersPathway interactionsPreventionProcessPublic DomainsPythonsRegulator GenesRegulatory PathwayResearchResearch PersonnelRisk FactorsRoleSample SizeSchemeSingle Nucleotide PolymorphismStatistical ComputingStatistical MethodsTestingUncertaintyWritingcausal variantcomputerized toolsdeep neural networkgene regulatory networkgenetic variantgenome wide association studygenome-widehigh dimensionalityinnovationinstrumentinterestmultidimensional dataneuralnovelphenotypic datapleiotropismpower analysisprogramsreconstructionsoftware developmenttheoriestherapeutic developmenttooltraittranscriptometreatment strategyweb site
项目摘要
Summary
As biotechnology advances, biomedical investigations have become more complex due to high-throughput and
high-dimensional data collected at a genomic scale. Of paramount importance is unraveling the regulatory roles
of genetic variants on genes and gene-to-gene regulatory relationships. On this ground, biomedical researchers
can identify causal Single-Nucleotide Polymorphisms (SNPs) and genes for complex traits and neurodegenerative
diseases such as Alzheimer's disease (AD) to develop treatment strategies. Given the urgent need to under-
stand the progression and etiology of these diseases, particularly AD, the PIs propose to develop statistical and
computational tools for accurate estimation and inference of gene regulatory networks, with a focus on AD and
other complex traits.
The project consists of two major components: estimation and inference of gene regulatory networks with
SNPs as instrumental variables (IVs). The main thrust will be on causal network reconstruction and inference
with IVs as interventions in the possible presence of invalid IVs and hidden confounders, with particular effort
on high-dimensional data, in which the number of variables may exceed the sample size. Concerning causal
network reconstruction, the project will develop novel methods of reconstructing gene regulatory networks as
directed acyclic graphs describing casual relationships among the SNPs (interventions), genes, and traits such
as AD. The project will develop high-dimensional inferential tools based on modified likelihood ratio tests and a
data perturbation scheme to account for the uncertainty involved in a discovery process. Moreover, it will focus
on hypothesis testing on (1) the directionality and strength of multiple (linear/nonlinear) causal relations and (2)
the presence of a pathway of causal relations. Computationally, the project will develop innovative methods and
algorithms for large-scale problems. For application, based on the reconstructed gene regulatory networks, we
will first identify causal genes for AD and AD's risk factors, such as lipids, then infer which of the risk factors are
(putatively) causal to AD.
摘要
随着生物技术的进步,生物医学研究变得更加复杂,因为高通量和
在基因组范围内收集的高维数据。最重要的是分解监管角色
基因上的遗传变异和基因间的调控关系。在此基础上,生物医学研究人员
可以识别复杂性状和神经退行性变的原因单核苷酸多态(SNPs)和基因
为阿尔茨海默病(AD)等疾病制定治疗策略。鉴于迫切需要-
根据这些疾病的进展和病因,特别是阿尔茨海默病,私人投资者建议制定统计和
精确估计和推断基因调控网络的计算工具,重点是AD和
其他复杂的特征。
该项目由两个主要部分组成:基因调控网络的估计和推断
作为工具变量(IV)的SNP。主要的重点将是因果网络的重构和推理
将静脉输液作为可能存在的无效静脉输液和隐藏的混杂因素的干预措施,并做出特别努力
对于变量数量可能超过样本大小的高维数据。关于因果关系
网络重建,该项目将开发重建基因调控网络的新方法,如
描述SNPs(干预)、基因和性状之间因果关系的有向无环图
作为AD。该项目将开发基于Modifi的似然比测试和
数据扰动方案,以解决发现过程中涉及的不确定性。此外,它将把重点放在
关于(1)多重(线性/非线性)因果关系的方向性和强度的假设检验和(2)
存在一条因果关系的路径。在计算方面,该项目将开发创新的方法和
大规模问题的算法。在应用方面,基于重构的基因调控网络,我们
fi是否会首先确定AD的原因基因和AD的风险因素,如血脂,然后推断哪些风险因素是
(推定)AD的因果关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Pan其他文献
Wei Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Pan', 18)}}的其他基金
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 62.36万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10267373 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10483117 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10358645 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Integrating Alzheimer's disease GWAS with proteomic and metabolomic QTL data
将阿尔茨海默病 GWAS 与蛋白质组学和代谢组学 QTL 数据整合
- 批准号:
10018279 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10647797 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10561609 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10088703 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10116249 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10267714 - 财政年份:2020
- 资助金额:
$ 62.36万 - 项目类别:














{{item.name}}会员




