Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
基本信息
- 批准号:10088703
- 负责人:
- 金额:$ 68.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdvocateAffectAgeAlzheimer&aposs DiseaseArchitectureAtlasesBiologicalBrainClassificationCommunitiesComplexComputer softwareDataData AnalysesDevelopmentDiseaseDocumentationEarly DiagnosisEntropyEnvironmentEtiologyGeneticGenotypeHandImageIndividualInvestigationKnowledgeLearningMagnetic Resonance ImagingManualsMethodologyMethodsModelingModificationNatureNoiseOutcomePerformancePhenotypePreventionProcessProxyPsychological reinforcementPublic DomainsPublishingPythonsResearchSpeedStatistical ComputingStatistical MethodsStructureTestingTimebasebiobankcombinatorialconvolutional neural networkcostcost effectivedeep learningendophenotypefeature extractionfeature selectiongenetic associationgenetic variantgenome wide association studygenomic locushigh dimensionalityimprovedinsightinterestmethod developmentmodel buildingneural network architectureneuroimagingnovelnovel strategiespredictive modelingprogramsrelating to nervous systemsoftware developmentsuccesstheoriestherapeutic developmenttooltraitweb site
项目摘要
Summary
Alzheimer's disease (AD) affects over 44 million individuals worldwide, and the number is projected to triple
by 2050. However, currently there is no cure for AD. This project aims to develop and apply novel statistical
methods, especially deep learning, to advance neuroimaging genetics for AD. It involves novel methodological
developments in Aims 1-4, cost-effective applications to the large-scale UK Biobank neuroimaging genetic data for
AD (Aim 5), and software development (Aim 6). All four Aims for the methods development tackle emerging impor-
tant topics in deep learning with their applications to neuroimaging genetics for AD; although the other three Aims
deal with independent topics with their own other broad applications, they in turn serve for Aim 1: 1) Aim 1 applies
manually searched deep learning models for automatic feature extraction/phenotyping from neuroimages, by which
both the statistical power and biological interpretation of subsequent genome-wide association studies (GWAS)
are expected to be enhanced; 2) Aim 2 employs (automatic) neural architecture search (NAS) to more efficiently
identify better deep learning models, which are then applied to Aim 1 for enhancing feature extraction/phenotyping
and thus boosting the power of GWAS; 3) Aim 3 focuses on explainable deep learning, offering biological insights
by localizing and highlighting the most important features extracted by deep learning models that can be used for
Aim 1; 4) Aim 4 develops a novel inferential theory for deep learning, which is then applied to rigorously test for
the statistical significance of any selected/highlighted features used in Aim 1. In Aim 5, these new methods will be
applied to the UK Biobank neuroimaging and GWAS data to identify novel genetic loci and neuroimaging features
for AD. As a byproduct, we will develop and distribute software implementing the proposed methods in Aim 6.
摘要
阿尔茨海默病(AD)影响着全球超过4400万人,预计这一数字将增加两倍
到2050年。然而,目前还没有治愈阿尔茨海默病的方法。该项目旨在开发和应用新的统计学
方法,特别是深度学习,促进阿尔茨海默病的神经影像遗传学。它涉及到新的方法论
AIMS 1-4的发展,对大规模英国生物库神经成像遗传数据的成本效益应用
广告(目标5)和软件开发(目标6)。方法开发的所有四个目标都解决了新出现的问题-
深度学习的新主题及其在阿尔茨海默病神经成像遗传学中的应用;尽管其他三个目标
用它们自己的其他广泛应用来处理独立的主题,它们反过来服务于Aim 1:1)Aim 1适用
人工搜索用于从神经图像中自动提取特征/表型的深度学习模型,通过该模型
后续全基因组关联研究的统计能力和生物学解释(GWAS)
2)Aim 2使用(自动)神经体系结构搜索(NAS)来更科学地执行fi
确定更好的深度学习模型,然后将其应用于目标1,以增强特征提取/表型分析
3)目标3侧重于可解释的深度学习,提供生物学见解
通过本地化和突出显示深度学习模型提取的最重要特征,这些特征可用于
目标1;4)目标4)为深度学习开发了一种新的推理理论,并将其应用于严格的测试
在目标1中使用的任何选定/突出显示的特征的统计意义。在目标5中,这些新方法将是fi
应用于英国生物库神经成像和GWAS数据以识别新的遗传位点和神经成像特征
对于AD。作为副产品,我们将开发和分发实现目标6中建议的方法的软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Pan其他文献
Wei Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Pan', 18)}}的其他基金
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 68.59万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10595510 - 财政年份:2022
- 资助金额:
$ 68.59万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10267373 - 财政年份:2021
- 资助金额:
$ 68.59万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10483117 - 财政年份:2021
- 资助金额:
$ 68.59万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10358645 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
Integrating Alzheimer's disease GWAS with proteomic and metabolomic QTL data
将阿尔茨海默病 GWAS 与蛋白质组学和代谢组学 QTL 数据整合
- 批准号:
10018279 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10647797 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10561609 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10116249 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10267714 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 68.59万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 68.59万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 68.59万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 68.59万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 68.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 68.59万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 68.59万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 68.59万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 68.59万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 68.59万 - 项目类别:
Miscellaneous Programs