Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
基本信息
- 批准号:10647797
- 负责人:
- 金额:$ 66.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdvocateAffectAlzheimer&aposs DiseaseArchitectureAtlasesBiologicalBrainClassificationCommunitiesComplexComputer softwareDataData AnalysesDevelopmentDiseaseDocumentationEarly DiagnosisEntropyEnvironmentEtiologyGeneticGenotypeImageIndividualInvestigationKnowledgeLearningMagnetic Resonance ImagingManualsMethodologyMethodsModelingModificationNatureNoiseOutcomePerformancePhenotypePreventionProcessProxyPsychological reinforcementPublic DomainsPublishingPythonsRelaxationResearchSpeedStatistical ComputingStatistical MethodsTestingWritingbiobankcombinatorialconvolutional neural networkcostcost effectivedeep learningdeep learning modelendophenotypefeature extractionfeature selectiongenetic associationgenetic variantgenome wide association studygenomic locushigh dimensionalityimprovedinsightinterestmethod developmentmodel buildingneuralneural network architectureneuroimagingnovelnovel strategiespredictive modelingprogramssoftware developmentsuccesstheoriestherapeutic developmenttooltraitweb site
项目摘要
Summary
Alzheimer's disease (AD) affects over 44 million individuals worldwide, and the number is projected to triple
by 2050. However, currently there is no cure for AD. This project aims to develop and apply novel statistical
methods, especially deep learning, to advance neuroimaging genetics for AD. It involves novel methodological
developments in Aims 1-4, cost-effective applications to the large-scale UK Biobank neuroimaging genetic data for
AD (Aim 5), and software development (Aim 6). All four Aims for the methods development tackle emerging impor-
tant topics in deep learning with their applications to neuroimaging genetics for AD; although the other three Aims
deal with independent topics with their own other broad applications, they in turn serve for Aim 1: 1) Aim 1 applies
manually searched deep learning models for automatic feature extraction/phenotyping from neuroimages, by which
both the statistical power and biological interpretation of subsequent genome-wide association studies (GWAS)
are expected to be enhanced; 2) Aim 2 employs (automatic) neural architecture search (NAS) to more efficiently
identify better deep learning models, which are then applied to Aim 1 for enhancing feature extraction/phenotyping
and thus boosting the power of GWAS; 3) Aim 3 focuses on explainable deep learning, offering biological insights
by localizing and highlighting the most important features extracted by deep learning models that can be used for
Aim 1; 4) Aim 4 develops a novel inferential theory for deep learning, which is then applied to rigorously test for
the statistical significance of any selected/highlighted features used in Aim 1. In Aim 5, these new methods will be
applied to the UK Biobank neuroimaging and GWAS data to identify novel genetic loci and neuroimaging features
for AD. As a byproduct, we will develop and distribute software implementing the proposed methods in Aim 6.
总结
阿尔茨海默氏病(AD)影响全球超过4400万人,并且该数字预计将增加两倍
到2050年然而,目前还没有治愈AD的方法。该项目旨在开发和应用新的统计
方法,特别是深度学习,以推进AD的神经成像遗传学。它涉及新的方法论
在目标1-4的发展,成本效益的应用,以大规模的英国生物银行神经影像遗传数据,
AD(目标5)和软件开发(目标6)。方法开发的所有四个目标都是为了解决新兴的重要问题,
深度学习的主题及其在AD神经成像遗传学中的应用;尽管其他三个目标
处理独立的主题与他们自己的其他广泛的应用,他们反过来服务于目标1:1)目标1适用
手动搜索深度学习模型,用于从神经图像中自动提取特征/表型,
随后的全基因组关联研究(GWAS)的统计功效和生物学解释
2)Aim 2采用(自动)神经架构搜索(NAS),
识别更好的深度学习模型,然后将其应用于目标1,以增强特征提取/表型分析
从而增强GWAS的力量; 3)目标3专注于可解释的深度学习,提供生物学见解
通过本地化和突出显示深度学习模型提取的最重要的特征,
目标1; 4)目标4为深度学习开发了一种新的推理理论,然后应用于严格测试
目标1中使用的任何选定/突出显示特征的统计显著性。在目标5中,这些新方法将
应用于英国生物库神经影像和GWAS数据,以确定新的遗传位点和神经影像特征
对于AD。作为一个副产品,我们将开发和分发实现目标6中提出的方法的软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Pan其他文献
Wei Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Pan', 18)}}的其他基金
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10595510 - 财政年份:2022
- 资助金额:
$ 66.78万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10267373 - 财政年份:2021
- 资助金额:
$ 66.78万 - 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
- 批准号:
10483117 - 财政年份:2021
- 资助金额:
$ 66.78万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10358645 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Integrating Alzheimer's disease GWAS with proteomic and metabolomic QTL data
将阿尔茨海默病 GWAS 与蛋白质组学和代谢组学 QTL 数据整合
- 批准号:
10018279 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10561609 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10267714 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
- 批准号:
10116249 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
- 批准号:
10088703 - 财政年份:2020
- 资助金额:
$ 66.78万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 66.78万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 66.78万 - 项目类别:
Studentship