Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
基本信息
- 批准号:10594563
- 负责人:
- 金额:$ 40.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisAccelerationAddressAlzheimer&aposs DiseaseAmino AcidsAmyloidArchitectureBindingBiochemicalBiological AssayCell AgingCell SurvivalCell physiologyCellular StressCollaborationsCommunicationComplexCoupledCouplingCryoelectron MicroscopyCrystallizationCytoprotectionDiseaseEventFamilyFilamentFluorescence Resonance Energy TransferFutureGoalsHeat shock proteinsHydrolysisLifeMass Spectrum AnalysisMechanicsMediatingMethodsMitochondriaModelingMolecular ChaperonesMolecular ConformationMotorNatureNeurodegenerative DisordersParkinson DiseasePathway interactionsPeptide HydrolasesProteinsProteolysisPublic HealthResolutionRotationScienceSiteSpecific qualifier valueStressStructureSubstrate InteractionSurfaceSystemVariantWorkYeastsalpha synucleinamyloid formationbiological adaptation to stressbiophysical techniquescrosslinkgenetic regulatory proteingrasphuman diseaseimprovedinsightmembermulticatalytic endopeptidase complexmutantnovel strategiespolypeptidepreventprotein aggregationprotein misfoldingprotein protein interactionproteostasissingle-molecule FRETsup35therapeutic targetunfoldaseyeast prion
项目摘要
PROJECT SUMMARY/ABSTRACT
Protein disaggregation and turnover are essential for protein homeostasis (proteostasis) and cell viability.
Malfunction occurs during cell stress and aging, accelerating deleterious protein aggregation and amyloid
formation. Improved mechanistic understanding is critical for determining how proteostasis pathways fail and for
identifying therapeutic targets in preventing neurodegenerative disease and other protein mis-folding diseases.
Heat shock protein (Hsp) 100 members of the conserved AAA+ family serve critical functions in all life as protein
unfoldases and disaggregases. They form hexameric, ATP-driven machines that catalyze the translocation of
polypeptide substrates through a central channel. The unfolded proteins are then refolded by Hsp molecular
chaperones or degraded by an associated protease, such as in the case of the proteasome.
Challenges in achieving structures of functional states have led to conflicting mechanistic models across
the AAA+ superfamily. Focusing on conserved Hsp100 members, yeast Hsp104 and the bacterial Clp proteins,
we have overcome these challenges by using cryo-electron microscopy to determine structures of biochemically
defined, functional complexes. We determined the first substrate-bound structures of a AAA+ disaggregase
(Hsp104) in distinct translocation states and discovered these machines operate by a rotary mechanism involving
precise substrate gripping and release states and a two amino acid translocation step. Since our last submission
of this application, we have determined multiple structures of the ClpAP AAA+ protease undergoing active
substrate unfolding and proteolysis Together our discoveries reveal a new paradigm for how AAA+s
mechanically unfold substrates. The next major question to address is: How is the translocation mechanism
(which is now considered highly conserved among AAA+s) coupled to specific cellular functions? Our long-term
goal is to determine how translocation and unfolding are precisely tuned for different proteostasis and cell stress
response functions. The objective for this application is to identify key allosteric control mechanisms that couple
ATP-driven translocation to substrate recognition, unfolding and degradation. Here we will: (SA1) Determine
mechanisms of protein unfolding and proteolysis by the ClpAP “bacterial proteasome” complex; (SA2) Determine
how Hsp104 interacts with and disaggregates native substrates and amyloids; and (SA3) Determine how the
Hsp70 chaperone collaborates with Hsp104 to promote substrate loading. At the completion of this work we will
identify conformational networks and protein:protein interactions that define how the core translocation cycle
connects allosterically to specify distinct cellular functions of these AAA+ machines.
项目摘要/摘要
蛋白质的解聚和周转对蛋白质的稳态(蛋白质稳态)和细胞活力是必不可少的。
在细胞应激和衰老过程中会发生功能障碍,加速有害的蛋白质聚集和淀粉样蛋白
队形。改进的机械学理解对于确定蛋白平衡通路如何失效和
确定预防神经退行性疾病和其他蛋白质错误折叠疾病的治疗目标。
热休克蛋白(HSP)100是保守的AAA+家族成员,作为蛋白质在所有生命中发挥重要功能
展开酶和解聚酶。它们形成六聚体,由三磷酸腺苷驱动,催化转位
多肽底物通过中央通道。未折叠的蛋白质随后被热休克蛋白分子重折叠。
伴侣或被相关的酶降解,例如在蛋白酶体的情况下。
在实现功能状态结构方面的挑战导致了相互冲突的机械模型
AAA+超家族。重点研究保守的Hsp100成员、酵母Hsp104和细菌CLP蛋白,
我们已经克服了这些挑战,通过使用低温电子显微镜来确定生物化学结构
已定义的功能复合体。我们确定了AAA+解聚酶的第一底物结合结构
(HSP104)处于不同的移位状态,并发现这些机器通过旋转机制运行,包括
精确的底物抓取和释放状态以及两个氨基酸的转位步骤。自从我们上次提交以来
在这一应用中,我们已经确定了ClpAP AAA+蛋白酶的多种结构正在经历活性
底物的展开和蛋白质的共同降解我们的发现揭示了AAA+S
以机械方式展开衬底。下一个要解决的主要问题是:移位机制是如何
(现在被认为在aaa+S中高度保守)与特定的细胞功能相结合?我们的长期合作
目标是确定易位和展开是如何针对不同的蛋白平衡和细胞压力进行精确调整的
响应函数。该应用程序目标是识别耦合的关键变构控制机制
ATP驱动的转位到底物的识别、展开和降解。在这里我们将:(SA1)确定
ClpAP“细菌蛋白酶体”复合体的蛋白质去折叠和蛋白质分解机制;(SA2)测定
Hsp104如何与天然底物和淀粉样蛋白相互作用和解聚;以及(SA3)决定
HSP70分子伴侣与HSP104协同促进底物负载。在这项工作完成后,我们将
识别构象网络和蛋白质:定义核心转位周期的蛋白质相互作用
变构连接以指定这些AAA+机器的不同细胞功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Ryland Southworth其他文献
Daniel Ryland Southworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Ryland Southworth', 18)}}的其他基金
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10439743 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10727054 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10219751 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10646105 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Project 3: Structural basis of amyloid formation and chaperone-mediated turnover
项目 3:淀粉样蛋白形成和分子伴侣介导的周转的结构基础
- 批准号:
10377430 - 财政年份:1997
- 资助金额:
$ 40.25万 - 项目类别:
Project 3: Structural basis of amyloid formation and chaperone-mediated turnover
项目 3:淀粉样蛋白形成和分子伴侣介导的周转的结构基础
- 批准号:
10601012 - 财政年份:1997
- 资助金额:
$ 40.25万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 40.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)