Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
基本信息
- 批准号:10646105
- 负责人:
- 金额:$ 7.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisAddressAlzheimer&aposs DiseaseAmino AcidsAmyloidArchitectureAwardBiochemicalBiological AssayCell AgingCell SurvivalCell physiologyCellsCellular StressCommunicationComplexConflict (Psychology)CoupledCouplingCryoelectron MicroscopyCrystallizationDiseaseEventFamilyFilamentFluorescence Resonance Energy TransferFutureGoalsHeat shock proteinsHydrolysisLifeMass Spectrum AnalysisMechanicsMediatingMethodsMitochondriaModelingMolecular ChaperonesMolecular ConformationMotorNatureNeurodegenerative DisordersParentsParkinson DiseasePathway interactionsPeptide HydrolasesProteinsProteolysisPublic HealthResolutionRotationScienceSiteStressStructureSubstrate InteractionSurfaceSystemTo specifyVariantWorkYeastsalpha synucleinamyloid formationbasebiological adaptation to stressbiophysical techniquescrosslinkgenetic regulatory proteinhuman diseaseimprovedinsightmembermulticatalytic endopeptidase complexmutantnovel strategiespolypeptidepreventprotein aggregationprotein misfoldingprotein protein interactionproteostasissingle-molecule FRETsup35therapeutic targetunfoldaseyeast prion
项目摘要
PROJECT SUMMARY/ABSTRACT - Original from Parent Award
Protein disaggregation and turnover are essential for protein homeostasis (proteostasis) and cell viability.
Malfunction occurs during cell stress and aging, accelerating deleterious protein aggregation and amyloid
formation. Improved mechanistic understanding is critical for determining how proteostasis pathways fail and for
identifying therapeutic targets in preventing neurodegenerative disease and other protein mis-folding diseases.
Heat shock protein (Hsp) 100 members of the conserved AAA+ family serve critical functions in all life as protein
unfoldases and disaggregases. They form hexameric, ATP-driven machines that catalyze the translocation of
polypeptide substrates through a central channel. The unfolded proteins are then refolded by Hsp molecular
chaperones or degraded by an associated protease, such as in the case of the proteasome.
Challenges in achieving structures of functional states have led to conflicting mechanistic models across
the AAA+ superfamily. Focusing on conserved Hsp100 members, yeast Hsp104 and the bacterial Clp proteins,
we have overcome these challenges by using cryo-electron microscopy to determine structures of biochemically
defined, functional complexes. We determined the first substrate-bound structures of a AAA+ disaggregase
(Hsp104) in distinct translocation states and discovered these machines operate by a rotary mechanism involving
precise substrate gripping and release states and a two amino acid translocation step. Since our last submission
of this application, we have determined multiple structures of the ClpAP AAA+ protease undergoing active
substrate unfolding and proteolysis Together our discoveries reveal a new paradigm for how AAA+s
mechanically unfold substrates. The next major question to address is: How is the translocation mechanism
(which is now considered highly conserved among AAA+s) coupled to specific cellular functions? Our long-term
goal is to determine how translocation and unfolding are precisely tuned for different proteostasis and cell stress
response functions. The objective for this application is to identify key allosteric control mechanisms that couple
ATP-driven translocation to substrate recognition, unfolding and degradation. Here we will: (SA1) Determine
mechanisms of protein unfolding and proteolysis by the ClpAP “bacterial proteasome” complex; (SA2) Determine
how Hsp104 interacts with and disaggregates native substrates and amyloids; and (SA3) Determine how the
Hsp70 chaperone collaborates with Hsp104 to promote substrate loading. At the completion of this work we will
identify conformational networks and protein:protein interactions that define how the core translocation cycle
connects allosterically to specify distinct cellular functions of these AAA+ machines.
项目概要/摘要-来自父母奖的原创
蛋白质解聚和周转对于蛋白质稳态(蛋白质稳态)和细胞活力是必不可少的。
在细胞应激和老化过程中发生功能障碍,加速有害的蛋白质聚集和淀粉样蛋白
阵提高机制的理解是至关重要的,以确定如何蛋白质代谢途径失败,
鉴定预防神经变性疾病和其它蛋白质错误折叠疾病的治疗靶点。
热休克蛋白(Hsp)100保守的AAA+家族成员作为蛋白质在所有生命中发挥关键作用
解折叠酶和解聚酶。它们形成六聚体,ATP驱动的机器,催化
多肽底物通过中央通道。然后,未折叠的蛋白质被热休克蛋白分子重折叠,
蛋白酶体可以是伴随分子或被相关蛋白酶降解的,例如在蛋白酶体的情况下。
实现功能状态结构的挑战导致了相互冲突的机械模型,
AAA+超级家族重点关注保守的Hsp 100成员、酵母Hsp 104和细菌Clp蛋白,
我们已经克服了这些挑战,通过使用低温电子显微镜来确定生物化学的结构,
功能性的复合物。我们确定了AAA+解聚酶的第一个底物结合结构
(Hsp 104)在不同的易位状态,并发现这些机器通过旋转机制,
精确的底物夹持和释放状态以及两个氨基酸的移位步骤。自从我们上次提交
在本申请中,我们已经确定了ClpAP AAA+蛋白酶的多种结构,
底物解折叠和蛋白质水解我们的发现揭示了AAA+
机械展开基板。下一个要解决的主要问题是:
(现在被认为是高度保守的AAA+s)耦合到特定的细胞功能?我们的长期
我们的目标是确定易位和解折叠是如何针对不同的蛋白质稳态和细胞应激进行精确调节的
响应函数。本申请的目的是确定关键的变构控制机制,
ATP驱动的易位到底物识别、解折叠和降解。在这里,我们将:(SA 1)确定
ClpAP“细菌蛋白酶体”复合物的蛋白质解折叠和蛋白质水解机制;(SA 2)确定
Hsp 104如何与天然底物和淀粉样蛋白相互作用并解聚;以及(SA 3)确定Hsp 104如何与天然底物和淀粉样蛋白相互作用并解聚。
Hsp 70分子伴侣与Hsp 104协同促进底物负载。在这项工作完成后,我们将
确定构象网络和蛋白质:蛋白质相互作用,定义核心易位循环
连接变构以指定这些AAA+机器的不同细胞功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Ryland Southworth其他文献
Daniel Ryland Southworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Ryland Southworth', 18)}}的其他基金
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10439743 - 财政年份:2021
- 资助金额:
$ 7.31万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10727054 - 财政年份:2021
- 资助金额:
$ 7.31万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10594563 - 财政年份:2021
- 资助金额:
$ 7.31万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10219751 - 财政年份:2021
- 资助金额:
$ 7.31万 - 项目类别:
Project 3: Structural basis of amyloid formation and chaperone-mediated turnover
项目 3:淀粉样蛋白形成和分子伴侣介导的周转的结构基础
- 批准号:
10377430 - 财政年份:1997
- 资助金额:
$ 7.31万 - 项目类别:
Project 3: Structural basis of amyloid formation and chaperone-mediated turnover
项目 3:淀粉样蛋白形成和分子伴侣介导的周转的结构基础
- 批准号:
10601012 - 财政年份:1997
- 资助金额:
$ 7.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant














{{item.name}}会员




