Reconstruction of heterogeneous and small macromolecules by cyro-EM

冷冻电镜重建异质小分子

基本信息

  • 批准号:
    10594985
  • 负责人:
  • 金额:
    $ 31.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Single-particle electron cryomicroscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method for biological macromolecules. In addition, cryo-EM produces images of individual molecules, and therefore has the potential to resolve conformational changes. The proposal aims to develop new algorithms and software for extending the application of cryo-EM to molecules that are either too small or too flexible to be mapped by existing computational tools for cryo-EM. This extension requires solving two of the most challenging computational problems posed by cryo-EM. First, mapping the structural variability of macromolecules is widely recognized as the main computational challenge in cryo-EM. Structural variations are of great significance to biologists, as they provide insight into the functioning of molecular machines. Existing computational tools are limited to a small number of distinct conformations, and therefore are incapable of tackling highly mobile biomolecules with multiple, continuous spectra of conformational changes. The first area of investigation in this project is the development of a computational framework to analyze continuous variability. The proposed approach is based on a new mathematical representation of continuously changing structures and its efficient estimation using Markov chain Monte Carlo (MCMC) algorithms. MCMC algorithms have found great success in many other scientific disciplines, yet they have been mostly overlooked for cryo-EM single particle analysis. Second, a major limiting factor for present cryo-EM studies is the molecule size. Images of small molecules (below ~50kDa) have too little signal to allow existing methods to provide valid 3-D reconstructions. It is commonly believed that cryo-EM cannot be used for molecules that are too small to be reliably detected and picked from micrographs. Challenging that widespread belief, the second area of investigation focuses on developing a groundbreaking approach for reconstructing small molecules directly from micrographs without particle picking. The new approach is based on autocorrelation analysis and completely bypasses particle picking and orientation assignment and requires just one pass over the data. The single-pass approach opens new possibilities for real-time processing during data acquisition.
项目总结

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Steerable ePCA: Rotationally Invariant Exponential Family PCA
  • DOI:
    10.1109/tip.2020.2988139
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Zhizhen Zhao;Lydia T. Liu;A. Singer
  • 通讯作者:
    Zhizhen Zhao;Lydia T. Liu;A. Singer
Fast principal component analysis for cryo-electron microscopy images
  • DOI:
    10.1017/s2633903x23000028
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas F. Marshall;Oscar Mickelin;Yunpeng Shi;A. Singer
  • 通讯作者:
    Nicholas F. Marshall;Oscar Mickelin;Yunpeng Shi;A. Singer
Random conical tilt reconstruction without particle picking in cryo-electron microscopy
Wilson statistics: derivation, generalization and applications to electron cryomicroscopy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amit Singer其他文献

Amit Singer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amit Singer', 18)}}的其他基金

Reconstruction of heterogeneous and small macromolecules by cyro-EM
冷冻电镜重建异质小分子
  • 批准号:
    10163220
  • 财政年份:
    2020
  • 资助金额:
    $ 31.29万
  • 项目类别:
Reconstruction of heterogeneous and small macromolecules by cyro-EM
冷冻电镜重建异质小分子
  • 批准号:
    10380770
  • 财政年份:
    2020
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved algorithms for macromolecular structure determination by cryo-EM and NMR
通过冷冻电镜和核磁共振测定大分子结构的改进算法
  • 批准号:
    8281471
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved algorithms for macromolecular structure determination by cryo-EM and NMR
通过冷冻电镜和核磁共振测定大分子结构的改进算法
  • 批准号:
    8098196
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved algorithms for macromolecular structure determination by cryo-EM and NMR
通过冷冻电镜和核磁共振测定大分子结构的改进算法
  • 批准号:
    7901378
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved Algorithms for Macromolecular Structure Determination by cyro-EM
冷冻电镜大分子结构测定的改进算法
  • 批准号:
    9301017
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved algorithms for macromolecular structure determination by cryo-EM and NMR
通过冷冻电镜和核磁共振测定大分子结构的改进算法
  • 批准号:
    8520329
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved Algorithms for Macromolecular Structure Determination by cyro-EM
冷冻电镜大分子结构测定的改进算法
  • 批准号:
    8761618
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:
Improved Algorithms for Macromolecular Structure Determination by cyro-EM
冷冻电镜大分子结构测定的改进算法
  • 批准号:
    8896811
  • 财政年份:
    2009
  • 资助金额:
    $ 31.29万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 31.29万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了