Topics in triangulated categories
三角类别中的主题
基本信息
- 批准号:DP200102537
- 负责人:
- 金额:$ 10.49万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2021
- 资助国家:澳大利亚
- 起止时间:2021-01-05 至 2023-09-22
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project in pure mathematics, more specifically in modern homological algebra, builds on work started by the chief investigator in the last five years. What has already been done has achieved striking results, solving very different problems that have been open for two decades. And there seem to be many directions in which it could be pursued further.
The international mathematical community seems intrigued by what the chief investigator has achieved recently - judging by invitations to give prestigious talks and the feedback at these events. The expected outcome is major progress in our understanding of derived categories, as well as diverse applications. The benefit will be to enhance the international stature of Australian science.
这个纯数学项目,更具体地说是现代同调代数,建立在首席研究员在过去五年中开始的工作基础上。已经做的事情已经取得了惊人的成果,解决了20年来一直存在的非常不同的问题。似乎还有许多方向可以进一步探讨。
国际数学界似乎对这位首席研究员最近取得的成就很感兴趣--从他受邀发表著名演讲以及在这些活动中的反馈来看。预期的结果是在我们对派生类别的理解以及不同的应用方面取得重大进展。其好处将是提高澳大利亚科学的国际地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Amnon Neeman其他文献
Prof Amnon Neeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Amnon Neeman', 18)}}的其他基金
Derived categories and their many applications
派生类别及其众多应用
- 批准号:
DP150102313 - 财政年份:2015
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Projects
Derived categories and applications
派生类别及应用
- 批准号:
FL100100137 - 财政年份:2011
- 资助金额:
$ 10.49万 - 项目类别:
Australian Laureate Fellowships
Triangulated categories and their applications
三角范畴及其应用
- 批准号:
DP1093094 - 财政年份:2010
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Projects
Derived categories and their applications, especially in K-theory, topology and algebraic geometry
派生范畴及其应用,特别是在 K 理论、拓扑和代数几何中
- 批准号:
DP0343239 - 财政年份:2003
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Projects
相似海外基金
The geometry of braids and triangulated categories
辫子的几何形状和三角类别
- 批准号:
DE240100447 - 财政年份:2024
- 资助金额:
$ 10.49万 - 项目类别:
Discovery Early Career Researcher Award
Metrics and Completions of Triangulated Categories
三角类别的指标和完成情况
- 批准号:
EP/V038672/1 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Research Grant
Simple-mindedness in triangulated categories
三角范畴中的头脑简单
- 批准号:
EP/V050524/1 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Research Grant
Noncommutative Algebras and Monoidal Triangulated Categories
非交换代数和幺半群三角范畴
- 批准号:
2200762 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T030771/1 - 财政年份:2021
- 资助金额:
$ 10.49万 - 项目类别:
Research Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 10.49万 - 项目类别:
Research Grant
Localizations of compactly generated triangulated categories
紧凑生成的三角类别的本地化
- 批准号:
2446226 - 财政年份:2020
- 资助金额:
$ 10.49万 - 项目类别:
Studentship
Unified homological algebra encompassing exact, abelian, triangulated categories and its enhancement
包含精确、阿贝尔、三角范畴的统一同调代数及其增强
- 批准号:
20K03532 - 财政年份:2020
- 资助金额:
$ 10.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations, Cohomology, and Geometry in Tensor Triangulated Categories
张量三角范畴中的表示、上同调和几何
- 批准号:
1701768 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Continuing Grant
Applications of triangulated categories in representation theory.
三角范畴在表示论中的应用。
- 批准号:
2013880 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Studentship














{{item.name}}会员




