Geometric methods in representation theory and the Langlands program

表示论中的几何方法和朗兰兹纲领

基本信息

  • 批准号:
    DP150103525
  • 负责人:
  • 金额:
    $ 43.47万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2015
  • 资助国家:
    澳大利亚
  • 起止时间:
    2015-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This research project aims to study questions in representation theory of groups using geometric methods. A central role is played by Langlands program which, broadly understood, can be viewed as a grand unified theory of mathematics. One setting for the work is modular representation theory with the aim of understanding irreducible characters. The project also aims to work on combinatorics and geometry in algebraic groups in small characteristics and one goal is to obtain a more uniform geometric understanding across all characteristics. The project also aims to work in the context of real groups and with the Gukov-Witten "fix of the orbit method" via branes. Finally, the project expects to begin a study of deformations of Galois representations in a general context.
本研究计画旨在利用几何方法研究群的表示论中的问题。朗兰兹纲领起着核心作用,广义地说,它可以被看作是数学的大统一理论。一个设置的工作是模块化表示理论的目的是了解不可约字符。该项目还旨在研究小特征代数群中的组合学和几何学,其中一个目标是在所有特征中获得更统一的几何理解。该项目还旨在在真实的群体的背景下工作,并通过膜与Gukov-Witten“固定轨道方法”。最后,该项目预计开始在一般情况下的变形伽罗瓦表示的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A/Prof Ting Xue其他文献

A/Prof Ting Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('A/Prof Ting Xue', 18)}}的其他基金

Algebraic groups and Springer theory
代数群和施普林格理论
  • 批准号:
    DE160100975
  • 财政年份:
    2016
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Discovery Early Career Researcher Award

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
  • 批准号:
    RGPIN-2017-03854
  • 财政年份:
    2021
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
  • 批准号:
    2101837
  • 财政年份:
    2021
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Continuing Grant
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
  • 批准号:
    RGPIN-2017-03854
  • 财政年份:
    2020
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
  • 批准号:
    RGPIN-2017-03854
  • 财政年份:
    2019
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
  • 批准号:
    1855773
  • 财政年份:
    2019
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference on Geometric Methods in Representation Theory 2018 and 2019
协作研究:2018年和2019年表示论中的几何方法会议
  • 批准号:
    1839720
  • 财政年份:
    2018
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Standard Grant
Geometric Methods in Representation Theory
表示论中的几何方法
  • 批准号:
    1802328
  • 财政年份:
    2018
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference on Geometric Methods in Representation Theory 2018 and 2019
协作研究:2018年和2019年表示论中的几何方法会议
  • 批准号:
    1839210
  • 财政年份:
    2018
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Standard Grant
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
  • 批准号:
    RGPIN-2017-03854
  • 财政年份:
    2018
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in Modular Representation Theory
模表示论中的几何方法
  • 批准号:
    1802241
  • 财政年份:
    2018
  • 资助金额:
    $ 43.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了