Algebraic groups and Springer theory
代数群和施普林格理论
基本信息
- 批准号:DE160100975
- 负责人:
- 金额:$ 21.55万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2016
- 资助国家:澳大利亚
- 起止时间:2016-06-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to explore representation theory, which is a study of the basic symmetries that occur in nature. By its nature, representation theory has applications to number theory, physics, national security and internet security, and other sciences. Generalised Springer theory plays an important role in representations of finite groups of Lie type. The project aims to develop an analogous theory in a more general setting that includes symmetric spaces. Moreover, the project aims to address various outstanding problems in algebraic groups. The project also plans to explore the connection between the geometry of certain null-cones and deformations of Galois representations.
这个项目的目的是探索表征理论,这是一个研究自然界中发生的基本对称性。就其本质而言,表示论可以应用于数论、物理学、国家安全和互联网安全以及其他科学。广义施普林格理论在李型有限群的表示中起着重要作用。该项目的目的是在更一般的环境中开发一个类似的理论,包括对称空间。此外,该项目旨在解决代数群中的各种悬而未决的问题。该项目还计划探索某些零锥的几何形状与伽罗瓦表示的变形之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A/Prof Ting Xue其他文献
A/Prof Ting Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('A/Prof Ting Xue', 18)}}的其他基金
Geometric methods in representation theory and the Langlands program
表示论中的几何方法和朗兰兹纲领
- 批准号:
DP150103525 - 财政年份:2015
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Projects
相似海外基金
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Research Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Standard Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 21.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)