COMPUTER SIMULATION THEORY OF GLOBULAR PROTEIN DYNA

球状蛋白质动态的计算机模拟理论

基本信息

  • 批准号:
    2022122
  • 负责人:
  • 金额:
    $ 18.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1986
  • 资助国家:
    美国
  • 起止时间:
    1986-12-01 至 1998-08-31
  • 项目状态:
    已结题

项目摘要

The prediction of the three dimensional structure of a globular protein from its amino acid sequence along with the mechanism by which protein folding occurs are among the most important unsolved problems of contemporary molecular biology. The overall objectives of this proposal are the continued development and refinement of algorithms which not only can predict protein tertiary structure using only sequence information as input but also may provide insights into the folding pathway. To achieve these goals, this proposal focuses on the lattice based aspects of a hierarchical approach to protein folding. High resolution lattice models of proteins, comprised of an alpha-carbon plus reduced off lattice, side chain description, will provide the overall folding pathways and folded conformations. The resulting folded lattice structures are estimated for the alpha-carbons to have a 2-4 angstroms rms deviation from the native state. Turning to the folding pathways, the predicted molten globule states and their free energy landscape will be characterized in detail. The factors responsible for side chain fixation on passage from the molten globule to the native state will be explored, with particular attention focused on the interplay of protein sequence and side chain packing. Specifically this proposal will address the following. (1). A new high coordination lattice model of proteins will be refined, different side chain realizations will be examined and the dynamic Monte Carlo algorithms parallelized. (2). Better empirical free energy functions will be developed. These include better methods for predicting the propensities for secondary structure and generalization of the hydrogen bond scheme to include backbone-side chain hydrogen bonds. To help eliminate misfolded structures, additional very robust knowledge based rules, such as the connections in supersecondary structural elements do not cross, will be included in the interaction scheme. Sequence specific tertiary interactions including a local burial turn, pair interactions and generalized cooperative multibody side chain contact templates will be self consistently derived in the presence of predicted secondary structure propensities. Then, a recently developed neural network which can recognize whether 7 by 7 subfragments of sidechain contact maps are protein like or not will be extended to include sequence specific preferences for subsequences to adopt specific patterns. This information will be obtained from a neural network trained on both homologous and non homologous subsequences that adopt these patterns. Thus, it should be general and not simply applicable to homologous sequence fragments. (3). The folding of representative motifs of globular proteins will be undertaken. Included are the helical proteins such as cytochrome c, whose predicted folding pathway will be compared to experiment, myohemerythrin, myoglobin and complement factor, 1c5a. The mixed motif proteins include ubiquitin, flavodoxin and PRA isomerase, and the beta-proteins include the 16th complement control protein of factor H, 1hcc, alpha-amylase, plastocyanin and retinol binding protein. (4). To validate the methodology, additional blind predictions of proteins whose structures are unknown will be undertaken. Likely candidates include rusticyanin and erythropoietin.
预测球形蛋白质的三维结构

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY SKOLNICK其他文献

JEFFREY SKOLNICK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY SKOLNICK', 18)}}的其他基金

Purchase of a GPU cluster for deep learning applications in protein-protein interaction and supercomplex prediction and biochemical literature annotation.
购买 GPU 集群,用于蛋白质-蛋白质相互作用、超复杂预测和生化文献注释中的深度学习应用。
  • 批准号:
    10797550
  • 财政年份:
    2016
  • 资助金额:
    $ 18.27万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    10399478
  • 财政年份:
    2016
  • 资助金额:
    $ 18.27万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    9926899
  • 财政年份:
    2016
  • 资助金额:
    $ 18.27万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    9270553
  • 财政年份:
    2016
  • 资助金额:
    $ 18.27万
  • 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
  • 批准号:
    10613959
  • 财政年份:
    2016
  • 资助金额:
    $ 18.27万
  • 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
  • 批准号:
    8474727
  • 财政年份:
    2012
  • 资助金额:
    $ 18.27万
  • 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
  • 批准号:
    8285272
  • 财政年份:
    2012
  • 资助金额:
    $ 18.27万
  • 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
  • 批准号:
    7957342
  • 财政年份:
    2009
  • 资助金额:
    $ 18.27万
  • 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
  • 批准号:
    7723173
  • 财政年份:
    2008
  • 资助金额:
    $ 18.27万
  • 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
  • 批准号:
    7601397
  • 财政年份:
    2007
  • 资助金额:
    $ 18.27万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.27万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了