COMPUTER SIMULATION THEORY OF GLOBULAR PROTEIN DYNA
球状蛋白质动态的计算机模拟理论
基本信息
- 批准号:2178769
- 负责人:
- 金额:$ 17.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1986
- 资助国家:美国
- 起止时间:1986-12-01 至 1997-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The prediction of the three dimensional structure of a globular protein
from its amino acid sequence along with the mechanism by which protein
folding occurs are among the most important unsolved problems of
contemporary molecular biology. The overall objectives of this proposal
are the continued development and refinement of algorithms which not only
can predict protein tertiary structure using only sequence information as
input but also may provide insights into the folding pathway. To achieve
these goals, this proposal focuses on the lattice based aspects of a
hierarchical approach to protein folding. High resolution lattice models
of proteins, comprised of an alpha-carbon plus reduced off lattice, side
chain description, will provide the overall folding pathways and folded
conformations. The resulting folded lattice structures are estimated for
the alpha-carbons to have a 2-4 angstroms rms deviation from the native
state. Turning to the folding pathways, the predicted molten globule
states and their free energy landscape will be characterized in detail.
The factors responsible for side chain fixation on passage from the molten
globule to the native state will be explored, with particular attention
focused on the interplay of protein sequence and side chain packing.
Specifically this proposal will address the following. (1). A new high
coordination lattice model of proteins will be refined, different side
chain realizations will be examined and the dynamic Monte Carlo algorithms
parallelized. (2). Better empirical free energy functions will be
developed. These include better methods for predicting the propensities
for secondary structure and generalization of the hydrogen bond scheme to
include backbone-side chain hydrogen bonds. To help eliminate misfolded
structures, additional very robust knowledge based rules, such as the
connections in supersecondary structural elements do not cross, will be
included in the interaction scheme. Sequence specific tertiary
interactions including a local burial turn, pair interactions and
generalized cooperative multibody side chain contact templates will be
self consistently derived in the presence of predicted secondary structure
propensities. Then, a recently developed neural network which can
recognize whether 7 by 7 subfragments of sidechain contact maps are
protein like or not will be extended to include sequence specific
preferences for subsequences to adopt specific patterns. This information
will be obtained from a neural network trained on both homologous and non
homologous subsequences that adopt these patterns. Thus, it should be
general and not simply applicable to homologous sequence fragments. (3).
The folding of representative motifs of globular proteins will be
undertaken. Included are the helical proteins such as cytochrome c, whose
predicted folding pathway will be compared to experiment, myohemerythrin,
myoglobin and complement factor, 1c5a. The mixed motif proteins include
ubiquitin, flavodoxin and PRA isomerase, and the beta-proteins include the
16th complement control protein of factor H, 1hcc, alpha-amylase,
plastocyanin and retinol binding protein. (4). To validate the
methodology, additional blind predictions of proteins whose structures are
unknown will be undertaken. Likely candidates include rusticyanin and
erythropoietin.
球状蛋白质三维结构的预测
从它的氨基酸序列沿着与蛋白质
折叠发生是最重要的未解决的问题之一,
当代分子生物学 本提案的总体目标
是算法的不断发展和完善,
可以预测蛋白质的三级结构只使用序列信息,
输入,但也可以提供对折叠途径的见解。 实现
为了实现这些目标,该建议侧重于基于格的方面,
蛋白质折叠的分层方法。 高分辨率晶格模型
蛋白质,由α-碳加上减少了晶格,侧
链描述,将提供整体折叠路径和折叠
构象 由此产生的折叠晶格结构估计为
α-碳与天然碳的均方根偏差为2-4埃
状态 转向折叠路径,预测的熔融球
国家和他们的自由能景观将详细描述。
侧链固定的因素,从熔融
将特别关注地探索球体到自然状态
专注于蛋白质序列和侧链包装的相互作用。
具体而言,这项建议将解决以下问题。 (一). 新高
将蛋白质的配位晶格模型进行细化,
链实现将被检查和动态蒙特卡罗算法
并行化。 (二)、 更好的经验自由能函数将是
开发 这些包括更好的方法来预测倾向
对于二级结构和氢键方案的推广,
包括主链-侧链氢键。 帮助消除错误折叠
结构,其他非常强大的基于知识的规则,如
超二级结构元素中的连接不会交叉,
包括在交互方案中。 序列特异性三级
相互作用,包括本地埋葬转向,对相互作用和
广义合作多体侧链接触模板将是
在存在预测二级结构的情况下自洽衍生
倾向 然后,最近开发的神经网络,
识别侧链接触图的7乘7亚片段是否
类似或不类似的蛋白质将被扩展以包括序列特异性的
偏好服从采取特定的模式。 这些信息
将从同源和非同源神经网络训练获得
采用这些模式的同源序列。 因此,
一般性的,而不是简单地适用于同源序列片段。 (三)、
球状蛋白的代表性基序的折叠将是
进行。 包括螺旋蛋白质,如细胞色素c,其
将预测的折叠途径与实验,肌红蛋白,
肌红蛋白和补体因子,1C 5a。 混合基序蛋白包括
泛素、黄素氧还蛋白和PRA异构酶,β-蛋白包括
因子H的第16补体控制蛋白,1hcc,α-淀粉酶,
质体蓝素和视黄醇结合蛋白。 (四)、 验证
方法,额外的盲目预测蛋白质的结构,
未知的将进行。 可能的候选人包括rusticyanin和
促红细胞生成素
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY SKOLNICK其他文献
JEFFREY SKOLNICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY SKOLNICK', 18)}}的其他基金
Purchase of a GPU cluster for deep learning applications in protein-protein interaction and supercomplex prediction and biochemical literature annotation.
购买 GPU 集群,用于蛋白质-蛋白质相互作用、超复杂预测和生化文献注释中的深度学习应用。
- 批准号:
10797550 - 财政年份:2016
- 资助金额:
$ 17.58万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10399478 - 财政年份:2016
- 资助金额:
$ 17.58万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9926899 - 财政年份:2016
- 资助金额:
$ 17.58万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9270553 - 财政年份:2016
- 资助金额:
$ 17.58万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10613959 - 财政年份:2016
- 资助金额:
$ 17.58万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8474727 - 财政年份:2012
- 资助金额:
$ 17.58万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8285272 - 财政年份:2012
- 资助金额:
$ 17.58万 - 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
- 批准号:
7957342 - 财政年份:2009
- 资助金额:
$ 17.58万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7723173 - 财政年份:2008
- 资助金额:
$ 17.58万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7601397 - 财政年份:2007
- 资助金额:
$ 17.58万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




