SACCHAROMYCES CEREVISIAE MICROTUBULE CYTOSKELETON
酿酒酵母微管细胞骨架
基本信息
- 批准号:2185229
- 负责人:
- 金额:$ 10.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-09-30 至 1996-03-31
- 项目状态:已结题
- 来源:
- 关键词:Saccharomyces cerevisiae affinity chromatography alleles cell cycle epitope mapping flow cytometry fluorescence microscopy fungal genetics gene expression gene interaction genetic manipulation genetic regulation guanine nucleotide binding protein high performance liquid chromatography immunofluorescence technique laboratory rabbit microtubule associated protein microtubules nucleic acid hybridization nucleic acid sequence polymerase chain reaction protein biosynthesis protein structure function
项目摘要
Having used biochemical approaches to identify components of the
Saccharomyces cerevisiae microtubule cytoskeleton, we will now determine
how these components function during mitosis, meiosis, and nuclear
fusion. In addition, our recently completed genetic selections for genes
that enhance the function of a beta-tubulin mutant promise to provide
unique insights into mechanisms used to modulate microtubule stability
in vivo. The principles learned from our studies will apply to all
eukaryotic cells because the properties of microtubules are highly
conserved. These specific questions will be addressed:
What are the in vivo functions of MAP27, MAP38 and MAP50? The in vivo
functions of three biochemically identified yeast MAPs, MAP27, MAP38 and
MAP50, will be genetically elucidated. MAP38 and MAP50 have been shown
by immunofluorescence to associate with both intra-nuclear and
cytoplasmic microtubules in vivo. Therefore, determining the functions
of these two proteins will be given the highest priority. MAP27 has GTP-
binding activity suggesting that it might regulate or insure the proper
assembly of microtubules. The genes that encode MAP27, MAP38 and MAP50
have been isolated. Using in vitro mutagenesis and gene replacement, we
will construct mutant alleles of these genes. The in vivo roles of each
MAP will be elucidated using four well-established and highly sensitive
in vivo assays of microtubule function in yeast. Once the genetic
analysis of the MAP functions is completed, the biochemical activities
that underlie their in vivo roles will be determined.
What are the in vivo functions of genes identified by suppression of a
benomyl-dependent beta-tubulin mutation? We have already identified
genes that can either be mutated or overexpressed to suppress the tub2-
150 beta-tublin mutant. These genes are likely to encode novel proteins
that regulate microtubule assembly in vivo. The same sensitive genetic
tests for in vivo microtubule function referred to for the MAP27, MAP38,
and MAP50 genes (above) will be used to elucidate the roles of the
suppressor genes. Double mutant analysis will determine the order in
which each of the proteins acts in processes such as mitotic spindle
assembly, and which subsets of proteins function together to regulate
microtubule assembly during the cell cycle.
In total, these studies will provide novel insights into the mechanisms
by which accessory proteins interact with tubulin in living cells to
mediate such functions as chromosome segregation, nuclear migration and
nuclear fusion.
Having used biochemical approaches to identify components of the
Saccharomyces cerevisiae microtubule cytoskeleton, we will now determine
how these components function during mitosis, meiosis, and nuclear
fusion. In addition, our recently completed genetic selections for genes
that enhance the function of a beta-tubulin mutant promise to provide
unique insights into mechanisms used to modulate microtubule stability
in vivo. The principles learned from our studies will apply to all
eukaryotic cells because the properties of microtubules are highly
conserved. These specific questions will be addressed:
What are the in vivo functions of MAP27, MAP38 and MAP50? The in vivo
functions of three biochemically identified yeast MAPs, MAP27, MAP38 and
MAP50, will be genetically elucidated. MAP38 and MAP50 have been shown
by immunofluorescence to associate with both intra-nuclear and
cytoplasmic microtubules in vivo. Therefore, determining the functions
of these two proteins will be given the highest priority. MAP27 has GTP-
binding activity suggesting that it might regulate or insure the proper
assembly of microtubules. The genes that encode MAP27, MAP38 and MAP50
have been isolated. Using in vitro mutagenesis and gene replacement, we
will construct mutant alleles of these genes. The in vivo roles of each
MAP will be elucidated using four well-established and highly sensitive
in vivo assays of microtubule function in yeast. Once the genetic
analysis of the MAP functions is completed, the biochemical activities
that underlie their in vivo roles will be determined.
What are the in vivo functions of genes identified by suppression of a
benomyl-dependent beta-tubulin mutation? We have already identified
genes that can either be mutated or overexpressed to suppress the tub2-
150 beta-tublin mutant. These genes are likely to encode novel proteins
that regulate microtubule assembly in vivo. The same sensitive genetic
tests for in vivo microtubule function referred to for the MAP27, MAP38,
and MAP50 genes (above) will be used to elucidate the roles of the
suppressor genes. Double mutant analysis will determine the order in
which each of the proteins acts in processes such as mitotic spindle
assembly, and which subsets of proteins function together to regulate
microtubule assembly during the cell cycle.
In total, these studies will provide novel insights into the mechanisms
by which accessory proteins interact with tubulin in living cells to
mediate such functions as chromosome segregation, nuclear migration and
nuclear fusion.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORJANA BARNES其他文献
GEORJANA BARNES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORJANA BARNES', 18)}}的其他基金
Saccharomyces cerevisiae microtubule and kinetochore dynamics
酿酒酵母微管和动粒动力学
- 批准号:
10623066 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
REGULATORY ROLES OF CASEIN KINASE 2 (CK2) IN KINETOCHORE FUNCTIONS
酪蛋白激酶 2 (CK2) 在动粒功能中的调节作用
- 批准号:
8365807 - 财政年份:2011
- 资助金额:
$ 10.06万 - 项目类别:
STRUCTURE, FUNCTION AND REGULATION OF THE IPL1 COMPLEX
IPL1 复合体的结构、功能和调节
- 批准号:
8365913 - 财政年份:2011
- 资助金额:
$ 10.06万 - 项目类别:
REGULATORY ROLES OF CASEIN KINASE 2 (CK2) IN KINETOCHORE FUNCTIONS
酪蛋白激酶 2 (CK2) 在动粒功能中的调节作用
- 批准号:
8171403 - 财政年份:2010
- 资助金额:
$ 10.06万 - 项目类别:
KINASE REGULATION DURING THE METAPHASE-ANAPHASE TRANSITION IN MITOSIS
有丝分裂中期-后期转变过程中的激酶调节
- 批准号:
7957670 - 财政年份:2009
- 资助金额:
$ 10.06万 - 项目类别:
A PROTEIN INTERACTION MAP OF THE BUDDING YEAST SPINDLE
萌芽酵母纺锤体的蛋白质相互作用图
- 批准号:
7957807 - 财政年份:2009
- 资助金额:
$ 10.06万 - 项目类别:
A PROTEIN INTERACTION MAP OF THE BUDDING YEAST SPINDLE
萌芽酵母纺锤体的蛋白质相互作用图
- 批准号:
7957783 - 财政年份:2009
- 资助金额:
$ 10.06万 - 项目类别:
A PROTEIN INTERACTION MAP OF THE BUDDING YEAST SPINDLE
萌芽酵母纺锤体的蛋白质相互作用图
- 批准号:
7723762 - 财政年份:2008
- 资助金额:
$ 10.06万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 10.06万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 10.06万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 10.06万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 10.06万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 10.06万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 10.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 10.06万 - 项目类别:
Collaborative Research and Development Grants