New directions in Hecke algebras
赫克代数的新方向
基本信息
- 批准号:DP200100712
- 负责人:
- 金额:$ 31.81万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2020
- 资助国家:澳大利亚
- 起止时间:2020-12-18 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To goal of this project is to make fundamental advances in representation theory, a powerful branch of mathematics focused on taking abstract mathematical structures and ``representing'' them in a concrete and useful way. In particular we aim to prove a series of long standing and influential conjectures by George Lusztig concerning the representation theory of Hecke algebras, objects which are ubiquitous in modern algebra. Our work will lead to new discoveries, a fundamentally deeper understanding of Kazhdan-Lusztig theory, and will drive future research. Benefits include enhanced international collaboration and increasing capacity in pure mathematics, especially in the cutting-edge area of representation theory.
该项目的目标是在表示论方面取得根本性进展,表示论是数学的一个强大分支,专注于采用抽象的数学结构并以具体且有用的方式“表示”它们。特别是,我们的目标是证明乔治·卢斯蒂格(George Lusztig)关于赫克代数表示论的一系列长期存在且有影响力的猜想,赫克代数是现代代数中普遍存在的对象。我们的工作将带来新的发现,从根本上更深入地理解 Kazhdan-Lusztig 理论,并将推动未来的研究。好处包括加强国际合作和提高纯数学能力,特别是在表示理论的前沿领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A/Prof James Parkinson其他文献
A/Prof James Parkinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('A/Prof James Parkinson', 18)}}的其他基金
The geometry and combinatorics of loop groups
环群的几何和组合学
- 批准号:
DP110103205 - 财政年份:2011
- 资助金额:
$ 31.81万 - 项目类别:
Discovery Projects
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant