TRANSLATION OF AUTOMATED SEUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
基本信息
- 批准号:2208900
- 负责人:
- 金额:$ 26.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-02-01 至 1997-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of this research is to improve automated analysis of
gel-based DNA sequencing ladders, through pattern recognition-based
translation of raw instrument data to DNA sequences. We emphasize neural
networks, adapted to particular sequencing conditions and instruments. The
performances of pattern recognition and conventional basecalling software
will be evaluated: (1) as experimental errors challenge description of the
natural allelic diversity of human adenoviral genomes; (2) for detection
and specification of heterozygous loci in diploid template experiments;
(3) for primer selection and assembly operations of large scale sequencing
projects. Distributions of basecalling errors will be analyzed in the
contexts of neighboring nucleotide identities and as results of different
sequencing strategies.
Three principal advantages are expected from pattern recognition
basecalling software: (1) analysis of contextual arrays of oligomer traces
improves basecalling accuracy; (2) specifically tasked, neural network and
algorithmic processors support on-line signal conditioning and basecalling
in real time; and (3) the signal conditioning and pattern recognition
modules support objective measures of confidence for each basecall.
This project will significantly and positively impact progress towards the
stated goals of the human genome initiative. No incremental costs for
hardware or strategic modifications are required. Cost savings can be
realized through automation of labor intensive review and editing of
primary data. Real-time basecalling supports higher throughput
instruments, exploiting faster separation of larger parallel arrays of
sequencing ladders. Objective basecall confidence parameters support
overlap assignment during sequence assembly, and should facilitate
sequence - match searches through expanding databases.
本研究的主要目的是提高自动化分析,
基于凝胶的DNA测序梯,通过基于模式识别的
将原始仪器数据转换为DNA序列。我们强调神经
网络,适合特定的测序条件和仪器。的
模式识别和传统碱基识别软件的性能
将被评估:(1)作为实验错误的挑战描述的
人类腺病毒基因组的天然等位基因多样性;(2)用于检测
和二倍体模板实验中杂合基因座的指定;
(3)用于大规模测序的引物选择和组装操作
项目碱基判定错误的分布将在
相邻核苷酸身份的背景和不同的结果
排序策略。
模式识别有三个主要优点
碱基判定软件:(1)寡聚物痕迹的上下文阵列的分析
提高碱基判定的准确性;(2)具体任务,神经网络和
算法处理器支持在线信号调节和基本调用
真实的时间;(3)信号调理和模式识别
模块支持每个基本判定的置信度的客观度量。
这一项目将对实现千年发展目标的进展产生重大和积极的影响。
人类基因组计划的目标。没有增加费用,
需要进行硬件或战略性修改。成本节约可以
通过劳动密集型审查和编辑的自动化实现,
主数据.实时碱基判定支持更高的吞吐量
仪器,利用更快的分离较大的平行阵列,
阶梯排序客观basecall置信参数支持
在序列组装过程中重叠分配,并应便于
通过扩展数据库进行序列匹配搜索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark Tibbetts其他文献
Clark Tibbetts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark Tibbetts', 18)}}的其他基金
TRANSLATION OF AUTOMATED SEQUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
3333740 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
TRANSLATION OF AUTOMATED SEQUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
2208899 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
2026810 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
2655184 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
TRANSLATION OF AUTOMATED SEUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
2208901 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
6413367 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
TRANSLATION OF AUTOMATED SEQUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
3333739 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
2872865 - 财政年份:1992
- 资助金额:
$ 26.74万 - 项目类别:
ADENOVIRUS GENOME EXPRESSION: PHYSICAL MAPPING STUDIES
腺病毒基因组表达:物理作图研究
- 批准号:
3171871 - 财政年份:1982
- 资助金额:
$ 26.74万 - 项目类别:
ADENOVIRUS GENOME EXPRESSION: PHYSICAL MAPPING STUDIES
腺病毒基因组表达:物理作图研究
- 批准号:
3171877 - 财政年份:1982
- 资助金额:
$ 26.74万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 26.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)