TRANSLATION OF AUTOMATED SEQUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
基本信息
- 批准号:2208899
- 负责人:
- 金额:$ 23.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-02-01 至 1995-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this proposal is to significantly improve automated
determination of DNA sequences.
Practical performance limits of automated DNA sequencers are determined
by the separation of oligonucleotides effected by polyacrylamide gel
electrophoresis. Designs of contemporary instruments are basically
similar. As oligomers in a DNA sequencing ladder pass the detector(s),
multi-component analysis specifies the radioactive or fluorescent label
associated with each oligomer. Under ideal conditions, determination of
the sequence of terminal nucleotides is straightforward. When
separations of oligomers or signal levels are not optimal, ambiguities
or errors are likely. These are miscalled bases, extra or missing bases,
or unidentified bases in the DNA sequence file, typically at about 1 to
3 errors per 100 bases.
An error rate near 1% is a common target for DNA sequencing performance,
since comparison with complementary strand sequence data should then
reduce errors to about 1 per 10,000 base pairs. This is only possible
if every mismatch of the sequence and its complement is identified and
correctly reconciled. Even then, error rates from 0.01% to 0.1%
approximate the variation among alleles in a gene pool: some such alleles
can correlate with severe burdens of inherited pathology. Small
improvements in single strand error rate will have substantial impact on
quality of finished sequences from 1/10,000 bp to 1/1,000,000 bp.
Improvements are needed if automated systems are to provide longer spans
of DNA sequences with fewer errors. The emphasis of this proposal is on
raw data acquisition and new methods for translation of the raw data to
finished DNA sequences.
An expert system, rule-based method will be developed to reinforce
conventional translation of raw data to DNA sequences. An independent,
pattern-recognition system will also be developed and tested, using
techniques for construction and training of neural nets. We will also
evaluate two new approaches to utilize single label, single data channels
for more efficient determination of DNA sequences. Alternative
approaches to oligonucleotide separation for sequence analysis will also
be investigated. In pursuit of these specific aims we will take
advantage of the relative separations and intensities of successive
oligomers in DNA sequencing ladders, as independent determinants of DNA
sequence-specific data stream patterns.
该提案的目的是大大提高自动化
确定DNA序列。
确定了自动DNA测序仪的实际性能极限
通过聚丙烯酰胺凝胶分离寡核苷酸
电泳 现代乐器的设计基本上是
相似 当DNA测序梯中的寡聚体通过检测器时,
多组分分析指定放射性或荧光标记
与每一个低聚物相关联。 在理想条件下,
末端核苷酸的序列是简单的。 当
低聚物或信号水平的分离不是最佳的,不明确
或错误可能。 这些都是错误的碱基,额外的或缺失的碱基,
或DNA序列文件中未鉴定的碱基,通常在约1至
每100个碱基3个错误。
接近1%的错误率是DNA测序性能的常见目标,
因为与互补链序列数据比较应该
将错误减少到每10,000个碱基对中约1个。 这是唯一可能
如果序列及其互补序列的每个错配都被识别,
正确的和解。 即使这样,错误率从0.01%到0.1%
基因库中等位基因之间的近似变化;某些等位基因
可能与严重的遗传病理负担有关。 小
单链错误率的改善将对
成品序列的质量从1/10,000 bp到1/1,000,000 bp。
如果自动化系统要提供更长的跨度,
错误更少的DNA序列。 这项建议的重点是
原始数据采集和将原始数据转换为
完成DNA序列
一个专家系统,基于规则的方法将被开发,以加强
将原始数据转换为DNA序列的传统翻译。 一个独立的,
模式识别系统也将开发和测试,使用
构造和训练神经网络的技术。 我们还将
评估两种利用单标签、单数据通道的新方法
以更有效地确定DNA序列。 替代
用于序列分析的寡核苷酸分离方法也将
追究 为了实现这些具体目标,我们将
的相对分离和连续的强度的优势
DNA测序梯中的寡聚体,作为DNA的独立决定簇
序列特定的数据流模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark Tibbetts其他文献
Clark Tibbetts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark Tibbetts', 18)}}的其他基金
TRANSLATION OF AUTOMATED SEUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
2208900 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
TRANSLATION OF AUTOMATED SEQUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
3333740 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
2026810 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
2655184 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
TRANSLATION OF AUTOMATED SEUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
2208901 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
6413367 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
TRANSLATION OF AUTOMATED SEQUENCER DATA TO DNA SEQUENCES
自动测序仪数据到 DNA 序列的翻译
- 批准号:
3333739 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
ENHANCED PERF AND THROUGHPUT OF AUTOMATED DNA SEQUENCE
增强自动化 DNA 序列的性能和吞吐量
- 批准号:
2872865 - 财政年份:1992
- 资助金额:
$ 23.96万 - 项目类别:
ADENOVIRUS GENOME EXPRESSION: PHYSICAL MAPPING STUDIES
腺病毒基因组表达:物理作图研究
- 批准号:
3171871 - 财政年份:1982
- 资助金额:
$ 23.96万 - 项目类别:
ADENOVIRUS GENOME EXPRESSION: PHYSICAL MAPPING STUDIES
腺病毒基因组表达:物理作图研究
- 批准号:
3171877 - 财政年份:1982
- 资助金额:
$ 23.96万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)