PHYSICAL LIMITS OF QUANTITATIVE SPECT
定量光谱的物理极限
基本信息
- 批准号:2269853
- 负责人:
- 金额:$ 29.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-08-01 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research will compare several scatter- and attenuation-
correction methods on the basis of their effects on performance in
quantitative imaging tasks using SPECT data. The imaging tasks to be
considered include estimation of activity and size of spherical
structures, estimation of activity within deep brain structures using
boundary information derived from MR data, and classification of brain
images into normal and Alzheimer's disease groups using cortical activity
patterns and activity within deep brain structures. A measure of
performance in each quantitative imaging task will be obtained for each
correction method being evaluated. These measures will range from
theoretical quantities, i.e., the Cramer-Rao lower bound on variance of
parameter estimates, to experimentally measured quantities, i.e.,
standard error of activity values estimated from simulated or phantom
images using maximum-likelihood or Bayesian techniques, to clinical
quantities, i.e., are under the ROC curve of a statistical or neural
network classifier Performance in these quantitative imaging tasks can
be viewed as a measure of image quality and is, therefore, a relevant
basis on which to compare scatter- and attenuation-correction methods.
The proposed research will achieve several objectives beyond the major
goal of comparison of correction methods. First, we will investigate the
potential of nonuniform projection sampling to improve task performance
by reducing noise levels at central locations. Second, we will address
the use inn estimation of a priori information, and will evaluate a
practical method of estimating deep structure activity using MR-derived
boundary information. Progress in these first two areas is expected to
lead to improved quantitation of activity in deep brain structures.
Finally, we will apply neural networks, which are only beginning to be
used in radiology and nuclear medicine, to the Alzheimer's disease-
related classification tasks.
拟议的研究将比较几个散射和衰减-
修正方法的基础上,其对性能的影响
定量成像任务使用SPECT数据。 成像任务是
考虑包括估计活动和大小的球形
结构,估计大脑深层结构内的活动,
从MR数据导出的边界信息和脑的分类
正常组和阿尔茨海默病组的大脑皮层活动
大脑深层结构的模式和活动。 的量度
将获得每个定量成像任务中的性能,
正在评估的校正方法。 这些措施将包括
理论量,即,方差Cramer-Rao下界
参数估计,实验测量的量,即,
根据模拟或体模估计的活度值的标准误差
图像使用最大似然或贝叶斯技术,以临床
数量,即,在统计或神经网络的ROC曲线下,
网络分类器在这些定量成像任务中的性能可以
被视为图像质量的衡量标准,因此,
在此基础上比较散射和衰减校正方法。
拟议的研究将实现几个目标以外的主要
校正方法的比较目标。 首先,我们将调查
非均匀投影抽样对提高任务绩效的潜力
降低中心位置的噪音水平。 第二,我们将解决
使用先验信息的内部估计,并将评估
利用MR导出的估计深部构造活动性的实用方法
边界信息 预计在前两个领域取得的进展将
从而改善了对深部脑结构中活动的定量。
最后,我们将应用神经网络,这只是开始
用于放射学和核医学,用于阿尔茨海默氏症-
相关分类任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIE FOLEY KIJEWSKI其他文献
MARIE FOLEY KIJEWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}