ANALYTICAL MODELS OF DETECTION AND DISCRIMINATION

检测和辨别的分析模型

基本信息

  • 批准号:
    2096383
  • 负责人:
  • 金额:
    $ 20.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-09-01 至 1996-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (Adapted from Applicant's Abstract): The proposed research would develop analytical models relating human performance in detection tasks to physical properties of the imaging system. The tasks to be investigated here resemble diagnostic tasks more closely than do the widely used signal-known- exactly (SKE) tasks in that they involve uncertainty about certain aspects of the signals, such as size or location. Therefore, the applicants expect that they would be more valid bases on which to design imaging systems. The proposed analytical approach generalizes detection tasks to estimation of certain parameters of the signal, such as amplitude or size. The models to be developed would be based on the Cramer-Rao (CR) and Barankin lower bounds on the precision with which the parameter of interest can be determined in the presence of uncertainty as to the values of other parameters. These bounds depend on the imaging task (i.e., which parameters are considered unknown), the signal, and the physical properties of the imaging system; they do not require specification of an estimation procedure. The bounds quantify the propagation of pixel noise into variance of the parameter estimates, incorporating the effects of nonstochastic ambiguities.Parameter estimation tasks, e.g., signal amplitude estimation, can be associated with binary tasks, e.g., signal detection. Increased variance in a parameter estimate implies decreased ideal observer signal to noise ratio (SNR) in the relevant binary task. It was proposed that increased variance in amplitude estimates due to uncertainty about the signal would be reflected in reduced human performance in detection. This hypothesis would be tested by psychophysical experiments which estimate the receiver operating characteristic (ROC) curve for human performance in the detection tasks, allowing direct comparison between human and ideal performance.
描述(改编自申请者摘要):拟议的研究 将开发与人类在检测中的表现相关的分析模型 任务与成像系统的物理属性相关。要完成的任务 此处调查的任务与诊断任务更相似 广泛使用的信号已知(SKE)任务,因为它们涉及 信号的某些方面的不确定性,例如大小或 地点。因此,申请者预计他们会更多 设计成像系统的有效依据。建议的分析 该方法将检测任务推广到某些参数的估计 例如,信号的幅度或大小。待开发的模型 将基于Cramer-Rao(CR)和Barankin下限 中确定感兴趣的参数的精度。 其他参数值存在不确定性。这些 界限取决于成像任务(即,考虑哪些参数 未知)、信号和成像系统的物理属性; 它们不需要详细说明评估程序。这个 边界将像素噪声的传播量化为 考虑非随机性影响的参数估计 模糊性。参数估计任务,例如,信号幅度 估计可以与例如信号检测的二进制任务相关联。 参数估计中的方差增加意味着理想值降低 相关二进制任务中的观察者信噪比(SNR)。它 建议增加幅度估计的方差,原因是 信号的不确定性将反映在人类活动的减少 在检测方面的表现。这一假设将通过以下方式进行检验 估计接收者工作情况的心理物理实验 检测任务中人类表现的特征(ROC)曲线, 允许在人类和理想表现之间进行直接比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARIE FOLEY KIJEWSKI其他文献

MARIE FOLEY KIJEWSKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARIE FOLEY KIJEWSKI', 18)}}的其他基金

Physical Limits of Quantitative SPECT
定量 SPECT 的物理极限
  • 批准号:
    6475397
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
PHYSICAL LIMITS OF QUANTITATIVE SPECT
定量光谱的物理极限
  • 批准号:
    2269853
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
Physical Limits of Quantitative SPECT
定量 SPECT 的物理极限
  • 批准号:
    6718479
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
Physical limits of quantitative ECT
定量 ECT 的物理极限
  • 批准号:
    7569987
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
PHYSICAL LIMITS OF QUANTITATIVE SPECT
定量光谱的物理极限
  • 批准号:
    2269852
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
PHYSICAL LIMITS OF QUANTITATIVE SPECT
定量光谱的物理极限
  • 批准号:
    2037677
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
PHYSICAL LIMITS OF QUANTITATIVE SPECT
定量光谱的物理极限
  • 批准号:
    2609650
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
PHYSICAL LIMITS OF QUANTITATIVE SPECT
定量光谱的物理极限
  • 批准号:
    2839358
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
Physical Limits of Quantitative SPECT
定量 SPECT 的物理极限
  • 批准号:
    6876712
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:
Physical limits of quantitative ECT
定量 ECT 的物理极限
  • 批准号:
    8063905
  • 财政年份:
    1993
  • 资助金额:
    $ 20.67万
  • 项目类别:

相似海外基金

Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
  • 批准号:
    23K11483
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
  • 批准号:
    23K11128
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
  • 批准号:
    23K03208
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
  • 批准号:
    23H01420
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
  • 批准号:
    567961-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
  • 批准号:
    EP/W007355/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Research Grant
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
  • 批准号:
    577586-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    University Undergraduate Student Research Awards
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
  • 批准号:
    22K10604
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
  • 批准号:
    22K20514
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了